Blood Chemistry Analysis

2011 Georgia Office of EMS Updates

Overview

• Blood Gas Analysis and Regulation
• Blood Chemistry
 – Normal values
 – Treatment for some of the more critical abnormal values
• Hematology
BLOOD GAS ANALYSIS

Blood Gas Values

- pH
- PCO₂
- HCO₃
- PO₂
- Base Excess
Blood Gas Values

- **pH**: Hydrogen ion concentration
 - Normal pH is between 7.35 and 7.45

<table>
<thead>
<tr>
<th>Venous Blood</th>
<th>Arterial Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIDOSIS</td>
<td>NORMAL</td>
</tr>
<tr>
<td>6.8</td>
<td>7.4</td>
</tr>
<tr>
<td>DEATH</td>
<td>ALKALOSIS</td>
</tr>
<tr>
<td>7.3</td>
<td>7.5</td>
</tr>
</tbody>
</table>
 | DEATH | 8.0

Change in pH of 0.4 in either direction may result in death!

Blood Gas Values

- **PCO₂**
 - Normal 35-45mmHg
 - Increased PCO₂
 - Respiratory Acidosis
 - Compensated metabolic alkalosis
 - Decreased PCO₂
 - Respiratory Alkalosis
 - Compensated metabolic acidosis

- **HCO₃**
 - Normal 22-26 mEq/L
Blood Gases

• Base Excess or Base Deficit
 – Normal -2 to +2 mEq/L
 – Base excess indicates too much buffer (metabolic alkalosis)
 – Base deficit indicates too little buffer (metabolic acidosis)

Acid-Base Regulation

• Maintenance of an acceptable pH range in accomplished by three mechanisms:
 – 1) Chemical Buffers
 • React very rapidly (less than a second)
 \[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}^+ + \text{HCO}_3^- \]
 – 2) Respiratory Regulation
 • Reacts rapidly (seconds to minutes)
 – 3) Renal Regulation
 • Reacts slowly (minutes to hours)
Acid-Base Imbalance

- **Metabolic acidosis**
 - Accumulation of abnormal acids in blood, low pH
 - Compensatory respiratory alkalosis

- **Metabolic alkalosis**
 - Excess metabolic base or loss of normal acid, high pH
 - Compensatory respiratory acidosis

- **Respiratory acidosis**
 - CO\(_2\) retention leads to increased PCO\(_2\)
 - Hypoventilation or intrinsic lung diseases

- **Respiratory alkalosis**
 - Blowing off CO\(_2\) results in decreased PCO\(_2\)
 - Hyperventilation
 - Potentially serious diseases may be responsible for high ventilatory levels.

ABG Interpretation

- Check the pH
 - Is the pH normal, acidic, or basic?

- Check the pH
 - High PCO\(_2\) indicates respiratory acidosis in the presence of a low pH
 - Low PCO\(_2\) indicates respiratory alkalosis in the presence of a high pH

- Check the pH
 - High HCO\(_3\) indicates metabolic alkalosis in the presence of a high pH
 - Low HCO\(_3\) indicates metabolic acidosis in the presence of a low pH
Blood Gas Analysis: Examples

- Normal pH=7.35-7.45 CO2=35 to 45 HCO3=22 to 26 BE= -2 to +3

1) pH=7.56 CO2=20 HCO3=22 BE -2

2) pH=7.24 CO2=60 HCO3=25 BE +2

3) pH=7.55 CO2=40 HCO3=38 BE +15

4) pH=7.12 CO2=40 HCO3=15 BE -20

1) pH= 7.56 CO2=20 HCO3=22 BE -2

- What do we know about the blood gas?
- pH is increased meaning the patient is alkalotic
- CO2 is decreased meaning the patient is having some type respiratory problem
- HCO3 is normal
- BE is normal

The patient is in Respiratory Alkalosis
2) pH=7.24 CO2=60 HCO3=25 BE +2

- What is wrong with this patient from their gas?
- pH is decreased meaning the patient is acidotic
- CO2 is elevated meaning the patient is having some type respiratory issue
- HCO3 is normal
- BE is in the normal range

- The patient is in Respiratory Acidosis

3) pH=7.55 CO2=40 HCO3=38 BE +15

- pH is elevated telling us the patient is alkalotic
- CO2 is in the normal range
- HCO3 is elevated beyond the normal range
- BE is elevated as well

- The patient is in Metabolic Alkalosis
Final Blood Gas Example
- pH is decreased meaning the patient is acidotic
- CO2 is in the normal range
- HCO3 is decreased showing some type metabolic problem
- BE is decreased as well

The patient is in Metabolic Acidosis.
Blood Chemistry (Basics)

- Sodium (Na+)
- Potassium (K+)
- Chloride (Cl-)
- Bicarb (HCO3-)
- Blood Urea Nitrogen (BUN)
- Creatinine (Cr)
- Glucose (BGL)
- Calcium (Ca+)

Blood Chemistry: Na+

- Sodium
 - Normal range 135-145mEq/L
 - Life threatening
 - < 120
 - >155
 - Can cause seizures, venous sinus thrombosis, CNS hemorrhage,
Blood Chemistry: Na+

- Hyponatremia
 - Excessive H2O
 - Cirrhosis, CHF
 - Hypoalbuminemia
 - Nephrotic
 - Malnutrition
 - Vomiting/ Diarrhea
 - Diuretics
 - SIADH
 - Cerebral Salt Wasting

- False Hyponatremia
 - Hyperglycemia
 - Hyperlipidemia

Blood Chemistry: Na+

- Hypernatremia
 - Diabetes Insipidus
 - Diarrhea
 - Dehydration
 - Hypercalciuria
 - Diabetes
 - Hyperaldosteronism
Blood Chemistry: Na+

- Treatment is based partially on the causes
- Do not correct Na+ faster than 10-15 mEq per day
 - will increase risk of cerebral edema
 - 3-4 ml/kg of free water will decrease serum Na+ 1mEq/L
- For acute symptomatic hyponatremia may use hypertonic saline 5-10 ml/kg

Blood Chemistry: K+

- Potassium
 - Normal 3.5 – 4 mEq/L
 - Life threatening
 - < 2.5
 - >6.5
 - Major complications
 - Arrhythmia
 - weakness
Blood Chemistry: K+

- **Hypokalemia**
 - Diuretics
 - Hypomagnesium
 - Licorice
 - RTA
 - V/D
 - Pyloric Stenosis
 - DKA
 - Antibiotics (ie: AmphiB)

- **Hyperkalemia**
 - Acidosis
 - Renal Failure
 - Muscle necrosis
 - Blood Transfusions
 - Hemolysis
 - CAH

Blood Chemistry: K+

- **Hyperkalemia**
 - Peaked T waves
 - Widening of QRS
 - Loss of P wave
 - ST segment depression
 - Bradycardia
 - Ventricular arrhythmias

- **Hypokalemia**
 - Prominent U wave
 - ST segment depression
 - Ventricular arrhythmias
Blood Chemistry: K+

- Treatment of Hypokalemia:
 - KCL bolus
 - 0.3 - 1 mEq / kg
 - no more than 0.6 mEq/kg/hour

- Treatment of Hyperkalemia:
 - Calcium chloride
 - Insulin and Glucose
 - NaHCO3
 - Kayexalate
 - Lasix
 - Albuterol

Blood Chemistry: Cl-

- Chloride
 - Normal 95-105 mEq/L
 - Hypochloremia
 - Metabolic Alkalosis
 - Respiratory Acidosis
 - CHF
 - Burns
 - Hyperchloremia
 - Metabolic Acidosis
 - Respiratory Alkalosis
 - Dehydration
 - RTA
Blood Chemistry: HCO3-

• Bicarbonate
 – Normal: 20-26 mEq/L
 • Increased in Metabolic Alkalosis and Compensated Respiratory Acidosis
 • Decreased in Metabolic Acidosis and Compensated Respiratory Alkalosis

Blood Chemistry: BUN

• Blood Urea Nitrogen
 – Normal: 5-20 mg/dl
 – Elevated Tissue Necrosis
 • Gi Bleed
 • High Protein Diet
 • Steroids
 • Shock
 • Dehydration
 • Diarrhea
 • Burns
 • Tissue Necrosis
 – Decreased
 • Anabolic Steroids
 • Hepatic Disease
 • Malnutrition
 • Pregnancy
 • Pregnancy
Blood Chemistry: Cr

- Creatinine
 - Normal: 0.5 – 1.5 mg/dl
 - Increased:
 - Renal disease
 - Muscle necrosis
 - Hypovolemia

Blood Chemistry: Glucose

- Glucose
 - Normal: 60-115 mg/dl (infants >40)
 - Hyperglycemia (AMS, Kussmal breathing)
 - Diabetes
 - Cushing's disease
 - Drugs (ie: Steroids, Epi)
 - Hypoglycemia (Tremors, Seizure, Sweating)
 - Malaria
 - Enzyme deficiency
 - Malignancy
Blood Chemistry: Glucose

• Treatment of Hypoglycemia
 – Neonate or Infant:
 • 2 ml/kg of a 10% Dextrose solution
 – Toddler or Child:
 • 2 ml/kg of a 25% Dextrose solution
 – Adult:
 • 50% Dextrose solution

Blood Chemistry: Glucose

• Treatment of Hyperglycemia
 – Isotonic fluid bolus
 – insulin (*hospital use only*)
 – NaHCO3 if cardiac instability is present
Blood Chemistry: Ca+

• Calcium
 – Normal 8-11mg/dl
 – Critical Values:<7 or > 12 (tetany, seizure, arrhythmia)

• Hypercalcemia (CHIMPS)
 – Cancer
 – Hyperthyroid
 – Iatrogens
 – Multiple Myeloma
 – Primary Hyperparathyroid
 – Sarcoidosis

Blood Chemistry: Ca+

• Hypocalcemia
 – renal failure
 – hypoparathyroid
 – pseudohypoparathyroid
 – magnesium deficiency
 – anticonvulsants
 – Rickets
 – Pancreatitis
 – Blood transfusions
HEMATOLOGY

Complete Blood Count (CBC)

• CBC measures the following:
 – The number of red blood cells (RBCs)
 – The number of white blood cells (WBCs)
 – The total amount of hemoglobin in the blood
 – The fraction of the blood composed of red blood cells (hematocrit)
 – The mean corpuscular volume (MCV) — the size of the red blood cells
CBC: WBCs

<table>
<thead>
<tr>
<th>TEST</th>
<th>NORMAL VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocyte (White Blood Cell) $\times 10^9$ cells/mm³ $\times 1000$ cells/µL</td>
<td></td>
</tr>
<tr>
<td>Birth</td>
<td>9.0-30.0</td>
</tr>
<tr>
<td>24 hours</td>
<td>9.4-34.0</td>
</tr>
<tr>
<td>1 month</td>
<td>5.0-19.5</td>
</tr>
<tr>
<td>1-3 years</td>
<td>6.0-17.5</td>
</tr>
<tr>
<td>4-7 years</td>
<td>5.5-15.5</td>
</tr>
<tr>
<td>8-13 years</td>
<td>4.5-13.5</td>
</tr>
<tr>
<td>Adult</td>
<td>4.5-11.0</td>
</tr>
<tr>
<td>Neutrophils</td>
<td></td>
</tr>
<tr>
<td>Band form</td>
<td>3-5%</td>
</tr>
<tr>
<td>Segmented</td>
<td>54-62%</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>25-33%</td>
</tr>
<tr>
<td>Monocytes</td>
<td>3-7%</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>1-3%</td>
</tr>
<tr>
<td>Basophils</td>
<td>0-0.75%</td>
</tr>
</tbody>
</table>

CBC: RBCs

<table>
<thead>
<tr>
<th>Erythrocytes (Red Blood Cells)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cord</td>
<td>3.9-5.5 million/mm³</td>
</tr>
<tr>
<td>1-3 days</td>
<td>4.0-6.6 million/mm³</td>
</tr>
<tr>
<td>1 week</td>
<td>3.9-6.3 million/mm³</td>
</tr>
<tr>
<td>2 weeks</td>
<td>3.6-6.2 million/mm³</td>
</tr>
<tr>
<td>1 month</td>
<td>3.0-5.4 million/mm³</td>
</tr>
<tr>
<td>2 months</td>
<td>2.7-4.9 million/mm³</td>
</tr>
<tr>
<td>3-6 months</td>
<td>3.1-4.5 million/mm³</td>
</tr>
<tr>
<td>0.5-2 years</td>
<td>3.7-5.3 million/mm³</td>
</tr>
<tr>
<td>2-6 years</td>
<td>3.9-5.3 million/mm³</td>
</tr>
<tr>
<td>6-12 years</td>
<td>4.0-5.2 million/mm³</td>
</tr>
<tr>
<td>12-18 years (male)</td>
<td>4.5-5.3 million/mm³</td>
</tr>
<tr>
<td>12-18 years (female)</td>
<td>4.1-5.1 million/mm³</td>
</tr>
</tbody>
</table>
CBC: Hemoglobin / Hematocrit

Hemoglobin
- 1-3 days: 14.5-22.5 g/dL
- 2 months: 9.0-14.0 g/dL
- 6-12 years: 11.5-15.5 g/dL
- 12-18 years (male): 13.0-16.0 g/dL
- 12-18 years (female): 12.0-16.0 g/dL

Hematocrit
- 1 day: 48-69%
- 2 days: 48-75%
- 3 days: 44-72%
- 2 months: 28-42%
- 6-12 years: 35-45%
- 12-18 years (male): 37-49%
- 12-18 years (female): 36-46%

CBC: Platelets

Platelet Count
- Birth-1 week: 84,000-478,000/mm³
- Thereafter: 150,000-400,000/mm³
Summary

• It is important for paramedics to gain a basic understanding of laboratory analysis.

• As the paramedic role evolves, interpreting blood analysis will become more a part of our everyday practice.