#### 2022—Arbovirus Final Report

#### Summary of Human West Nile Virus and Other Arboviral Infections, Georgia 2022

West Nile virus (WNV) is a mosquito-borne disease of birds. Humans are occasionally infected with WNV through mosquito bites. Approximately 1 in 5 people infected with WNV develop symptoms of "West Nile Fever", which is often characterized by fever, headache, fatigue, and muscle pain or weakness. Less than 1% of people infected with WNV develop neurologic disease such as meningitis, encephalitis, or flaccid paralysis.

West Nile virus was first recognized in Georgia in July 2001. That year, there were 6 human cases of WNV encephalitis reported in Georgia, including one death. Since then cases have been reported each year with varying numbers of human deaths.

To improve identification of Georgians infected with WNV, surveillance for WNV illness in humans was expanded for the 2003 transmission season to include all acute infections of WNV. In addition, routine screening of the nation's blood supply began in 2003, resulting in the identification of persons infected with WNV prior to the development of symptoms, if symptoms developed at all.

While the majority of human infections with arboviruses have resulted from bites by infected mosquitoes, other rare modes of transmission have been identified, including blood transfusion and organ transplantation.

Historical data on arboviral diseases in Georgia 2002-2021 are available upon request.

In 2022, Georgia reported 19 cases of WNV and 4 WNV presumptive viremic donors (PVD), with 2 deaths. Presumptive viremic donors (PVDs) are people who had no symptoms at the time of blood donation or other testing, but tested positive for the presence of select arboviruses. Although we track and report PVDs to the CDC for epidemiological purposes, we do not count these as cases in our state.

health districts. Among these cases, 15 (79%) were neuroinvasive, all patients had illness onset during July-November and 13 (68%) cases were male. The average patient age of all WNV disease cases was 57.6 (range: 15-87) and the average patient age of all neuroinvasive cases was 60.6 (range: 25-87). Cases were reported between July and November, with a peak in August. The PVDs occurred in August and October. Their average age was 56.5 (range: 47-66). Two PVDs were male and 2 were female.

California serogroup (CS) viruses, including California encephalitis, Keystone, La Crosse, Jamestown Canyon (JCV), snowshoe hare, and trivittatus, belong to the Bunyaviridae family of viruses. In the United States, La Crosse virus (LACV) is the most common of the California serogroup viruses. There were no cases of California Serogroup, non-specified reported in Georgia in 2022.

Saint Louis encephalitis virus is related to WNV and is a member of the Flaviviridae subgroup. Until recently, SLE had not been reported in Georgia since the 1970s. In 2018, one case of SLE was reported in Georgia. There were no SLE cases reported in Georgia in 2022.

No cases of Eastern Equine Encephalitis (EEE) were reported in 2022.

The first travel-associated case of Zika was reported in Georgia in December 2015. In 2016, there were 113 travel-associated cases reported in Georgia. In 2017, there were a total of 11 travel-associated cases, 8 of which were asymptomatic. In 2018, a total of 2 asymptomatic travel-associated ZIKV cases were reported. In 2019, there were 5 travel-related ZIKV cases reported, 4 of which were asymptomatic. There was also 1 case of occupationally-acquired ZIKV. Between 2020 and 2022, no travel-related cases of ZIKV were reported. To date there have been no locally transmitted (mosquito to human) cases of Zika in Georgia. Two travel-associated Dengue cases were reported in 2022, but no locally-acquired cases of CHIK were reported in 2022; no locally-acquired cases of CHIK have ever been reported in Georgia.

To date, 19 WNV disease cases were reported from 10 counties in 9 public





|                | <pre># cases (including asymptomatic), 2022</pre> |     |     |       |  |
|----------------|---------------------------------------------------|-----|-----|-------|--|
| District       | CS (LAC)                                          | EEE | WNV | TOTAL |  |
| 1-1            |                                                   |     | 1   | 1     |  |
| 1-2            |                                                   |     | 1   | 1     |  |
| 2-0            |                                                   |     |     | 0     |  |
| 3- (1,2,3,4,5) |                                                   |     | 11  | 11    |  |
| 4-0            |                                                   |     |     | 0     |  |
| 5-1            |                                                   |     |     | 0     |  |
| 5-2            |                                                   |     | 2   | 2     |  |
| 6-0            |                                                   |     | 5   | 5     |  |
| 7-0            |                                                   |     |     | 0     |  |
| 8-1            |                                                   |     | 1   | 1     |  |
| 8-2            |                                                   |     |     | 0     |  |
| 9-1            |                                                   |     | 1   | 1     |  |
| 9-2            |                                                   |     | 1   | 1     |  |
| 10-0           |                                                   |     |     | 0     |  |
| TOTAL          | 0                                                 | 0   | 23  | 23    |  |

\*Does not include asymptomatic cases

|           |       |     |         | A            |
|-----------|-------|-----|---------|--------------|
| age range | WINND | WNF | unknown | Asymptomatic |
| 0-10      |       |     |         |              |
| 11-20     |       | 1   |         |              |
| 21-30     | 1     |     |         |              |
| 31-40     | 1     | 1   |         |              |
| 41-50     |       |     |         | 2            |
| 51-60     | 4     |     |         |              |
| 61-70     | 6     | 1   |         | 2            |
| 71-80     | 2     |     | 1       |              |
| >80       | 1     |     |         |              |
| TOTAL     | 15    | 3   | 1       | 4            |

| Table 2 | : Clinical | Syndromes. | 2022 |
|---------|------------|------------|------|
|         |            |            |      |

|                    | Virus |         |     |  |  |  |
|--------------------|-------|---------|-----|--|--|--|
| Diagnosis          | EEE   | CS(LAC) | WNV |  |  |  |
| ymptomatic         |       |         | 4   |  |  |  |
| cephalitis         |       |         | 5   |  |  |  |
| ver                |       |         | 3   |  |  |  |
| eningitis          |       |         | 4   |  |  |  |
| her, neuroinvasive |       |         | 6   |  |  |  |
| Iknown             |       |         | 1   |  |  |  |
|                    | 0     | 0       | 23  |  |  |  |

| Arbovirus | Month of Onset | County of Residence | Clinical Syndrome                            | Fatality | # cases |
|-----------|----------------|---------------------|----------------------------------------------|----------|---------|
|           |                | Houston             | Encephalitis - Including Meningoencephalitis |          | 1       |
|           | July           | Pichmond            | Febrile illness                              |          | 1       |
|           |                | Richmond            | Other Neuroinvasive Presentation             |          | 1       |
|           |                | Ben Hill            | Encephalitis - Including Meningoencephalitis | Yes      | 1       |
|           |                | Clayton             | Asymptomatic                                 |          | 1       |
|           |                | DeKalb              | Asymptomatic                                 |          | 1       |
|           | August         | Fulton              | Febrile illness                              |          | 1       |
|           |                | Fullon              | Other Neuroinvasive Presentation             |          | 1       |
|           |                | McIntosh            | Asymptomatic                                 |          | 1       |
|           |                | Richmond            | Other Neuroinvasive Presentation             |          | 1       |
|           |                | Whitfield           | Meningitis                                   |          | 1       |
| WNV       |                | Cobb                | Other Neuroinvasive Presentation             |          | 1       |
|           |                | Fulton<br>ptember   | Febrile illness                              |          | 1       |
|           | Contombor      |                     | Meningitis                                   |          | 1       |
|           | September      |                     | Other Neuroinvasive Presentation             |          | 1       |
|           |                | Gwinnett            | Encephalitis - Including Meningoencephalitis |          | 1       |
|           |                | Houston             | Encephalitis - Including Meningoencephalitis |          | 1       |
|           |                | Richmond            | Encephalitis - Including Meningoencephalitis | Yes      | 1       |
|           | Ostabar        | Cobb                | Meningitis                                   |          | 1       |
|           | Uctober        | Fulton              | Asymptomatic                                 |          | 1       |
|           |                | Bacon               | Meningitis                                   |          | 1       |
|           | November       | Columbia            | unknown                                      |          | 1       |
|           |                | Paulding            | Other Neuroinvasive Presentation             |          | 1       |

Table 1: Clinical Syndromes, 2022

#### **Zoonotic Diseases**

Zoonotic diseases are those diseases transmitted from animals to humans through direct contact or through food, water, or the environment, contributing to 61% of infectious organisms affecting humans. Zoonotic diseases may be categorized by their ability to spread among humans through 5 stages ranging from only spread among animals (stage 1) to fully human pathogens (stage 5). Fig. 1 illustrates the stages through which pathogens of animals evolve to cause human diseases.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096727/

| Stage                                |        |                   |                             |         | Transmission<br>to humans                  |
|--------------------------------------|--------|-------------------|-----------------------------|---------|--------------------------------------------|
| Stage 5:<br>exclusive<br>human agent |        |                   | $\oint \longleftrightarrow$ |         | Only from<br>humans                        |
| Stage 4:<br>long outbreak            |        | <b>(1</b>         | $\rightarrow$               |         | From animals<br>or (many cycles)<br>humans |
| Stage 3:<br>limited<br>outbreak      |        | (𝑥 <sup>−</sup> ) | → ↓ <>                      |         | From animals<br>or (few cycles)<br>humans  |
| Stage 2:<br>primary<br>infection     |        | <b>a</b> -        | →                           |         | Only from animals                          |
| Stage 1:<br>agent only<br>in animals | te     |                   |                             | R.      | None                                       |
|                                      | Rabies | Ebola             | Dengue                      | HIV-1 M |                                            |

| Cases by Year (includes asymptomatic cases*) |     |          |     |     |  |
|----------------------------------------------|-----|----------|-----|-----|--|
| Year                                         | EEE | CS (LAC) | SLE | WNV |  |
| 2001                                         | 2   |          |     | 6   |  |
| 2002                                         |     | 1        |     | 45  |  |
| 2003                                         | 2   | 1        |     | 55  |  |
| 2004                                         |     | 5        |     | 23  |  |
| 2005                                         | 1   | 1        |     | 24  |  |
| 2006                                         | 1   | 1        |     | 11  |  |
| 2007                                         | 1   | 3        |     | 55  |  |
| 2008                                         |     | 2        |     | 12  |  |
| 2009                                         |     | 2        |     | 6   |  |
| 2010                                         |     | 2        |     | 14  |  |
| 2011                                         |     | 2        |     | 25  |  |
| 2012                                         | 1   |          |     | 117 |  |
| 2013                                         | 1   | 2        |     | 20  |  |
| 2014                                         |     | 2        |     | 13  |  |
| 2015                                         |     | 2        |     | 15  |  |
| 2016                                         | 1   |          |     | 13  |  |
| 2017                                         | 2   | 2        |     | 63  |  |
| 2018                                         | 1   |          | 1   | 38  |  |
| 2019                                         | 1   | 1        |     | 16  |  |
| 2020                                         |     | 1        |     | 12  |  |
| 2021                                         | 2   | 2        |     | 5   |  |
| 2022                                         |     |          |     | 23  |  |
| Grand Total                                  | 16  | 32       | 1   | 611 |  |

#### **Exotic Mosquito-Borne Diseases**

There are no comprehensive reports on the combined economic burden from vector-borne infections worldwide, except for single diseases. According to the WHO, vector-borne diseases represent 17% of all infectious diseases and cause >700,000 deaths annually, with 80% of the world's population at risk of being infected by one or more vector-borne diseases.

Of all known vector-borne diseases, mosquito-borne infectious diseases account for the highest number of reported cases, mortality, and disabilityadjusted life-years (DALYs). As an example, the global cost of Dengue fever (DF) was estimated in 2013 to 8.9 billion US\$ (95% uncertainty interval [UI] 3.7–19.7 billion). However, the economic costs from medical care, surveillance, vector control, and lost productivity associated with DF and Chikungunya (CHIK) is much higher, and accounts annually for ~39 billion USD. In that view, pandemics could be economically devastating, particularly for developing countries where the disease is endemic.

https://www.liebertpub.com/doi/10.1089/vbz.2020.2762

| Exotic Viruses - County of Origin |                     |         |                |  |
|-----------------------------------|---------------------|---------|----------------|--|
| Virus                             | County of<br>Origin | # cases | Month of Onset |  |
| DEN                               | CUBA                | 1       | Aug            |  |
| DEN                               | EL SALVADOR         | 1       | March          |  |

**TRAVEL-ASSOCIATED CASES, 2022** 



# **Global Examples of Emerging and Re-Emerging Infectious Diseases**



## Veterinary Data

Three horses tested positive for WNV in 2022. The number of reported cases of WNV in horses decreased rapidly after 2002, likely due to increased immunity, increased vaccination, and/or decreased testing, but had lately begun to increase again, although somewhat sporadically.

No horses tested positive for EEE in 2022. Eastern equine encephalitis is endemic in the Coastal and Coastal Plains areas of Georgia. During an average year, four or five EEE+ horses are reported from these areas. The true number of horse cases is probably higher, and lack of reporting is due primarily to undertesting, although subclinical infections can occur with EEE.



the year against EEE and WNV is critical to protecting horses from the potentially fatal mosquitoborne diseases.

Vaccinating at the proper time of

|            |          |          |       | 20                | 021 | 5      | 1    |
|------------|----------|----------|-------|-------------------|-----|--------|------|
|            |          |          |       | 20                | 022 | 3      |      |
| Onset Date | County   | District | Virus | vaccination statu | us  | outco  | me   |
| 9/17/22    | Randolph | 7-0      | WNV   | unvaccinated      |     | recove | ered |
| 9/11/22    | Richmond | 6-0      | WNV   | unknown           |     | unkno  | wn   |
| 11/30/22   | Elbert   | 10-0     | WNV   | unvaccinated      |     | unkno  | wn   |







#### **Dead Bird Surveillance**



As of 2012, federal funding was no longer available to test birds. Submission of dead birds had already decreased from a high of 2421 birds submitted to SCWDS for testing in 2002, to 2 birds submitted in 2019.

In 2022, no birds were reported as submitted for testing.

Dead bird surveillance continues to lose ground as a surveillance tool, and even more so now when no funding is available at the State level to support testing; most counties do not have the resources to pick up and ship birds for testing in any case. Bird testing does continue to have some utility however, esp where mosquito surveillance data are not available. In addition, positive dead bird reports can be used to trigger public education messages reminding people to wear repellent and to dump out standing water.

| year | WNV+ | total | % positive |
|------|------|-------|------------|
| 2001 | 322  | 1566  | 20.6%      |
| 2002 | 931  | 2421  | 38.5%      |
| 2003 | 478  | 2131  | 22.4%      |
| 2004 | 105  | 581   | 18.1%      |
| 2005 | 23   | 311   | 7.4%       |
| 2006 | 15   | 281   | 5.3%       |
| 2007 | 10   | 97    | 10.3%      |
| 2008 | 5    | 20    | 25.0%      |
| 2009 | 1    | 21    | 4.8%       |
| 2010 | 4    | 9     | 44.4%      |
| 2011 | 1    | 6     | 16.7%      |
| 2012 | 1    | 9     | 11.1%      |
| 2013 |      | 11    |            |
| 2014 |      |       |            |
| 2015 |      |       |            |
| 2016 |      |       |            |
| 2017 | 1    | 5     | 20.0%      |
| 2018 | 1    | 6     | 16.7%      |
| 2019 | 1    | 2     | 50.0%      |
| 2020 |      |       |            |
| 2021 | 1    | 3     | 33.3%      |
| 2022 |      |       |            |





Table of West Nile Virus host competency of 23 species of birds. A larger index number correlates to higher amounts of viral load in concurrence with long durations of viremia. Data adapted from Komar et al. 2003.

| Species              | Reservoir Competence Index |
|----------------------|----------------------------|
| Blue Jay             | 2.55                       |
| Common Grackle       | 2.04                       |
| House Finch          | 1.76                       |
| American Crow        | 1.62                       |
| House Sparrow        | 1.59                       |
| Ring-billed Gull     | 1.26                       |
| Black-billed Magpie  | 1.08                       |
| American Robin       | 1.08                       |
| Red-winged Blackbird | 0.99                       |
| American Kestrel     | 0.93                       |
| Great Horned Owl     | 0.88                       |
| Killdeer             | 0.87                       |
| Fish Crow            | 0.73                       |
| Mallard              | 0.48                       |
| European Starling    | 0.22                       |
| Mourning Dove        | 0.19                       |
| Northern Flicker     | 0.06                       |
| Canada Goose         | 0.03                       |
| Rock Dove            | 0                          |
| American Coot        | 0                          |
| Ring-necked Pheasant | 0                          |
| Monk Parakeet        | 0                          |





Komar, N., S. Langevin, S. Hinten, N. Nemeth, E. Edwards, D. Hettler, B. Davis, R. Bowen, and M. Bunning. 2003. <u>Experimental Infection of North American Birds with the New York 1999</u> <u>Strain of West Nile Virus.</u> Emerging Infectious Diseases 9(3): 311-322.

### **Mosquito Surveillance**

In 2012, due to funding cuts, mosquito testing was no longer supported by the State Department of Public Health. Counties testing mosquito pools in-house or holding contracts for testing continued doing mosquito surveillance and shared some of the test results with the GDPH. Unfortunately, data submitted to the GDPH are likely to be incomplete, making data analysis difficult and results suspect.

Fourteen counties sent mosquitoes for testing in 2022. A total of 3611 pools of mosquitoes (82257 individuals) were sent for testing in 2022, with results reported to the GDPH. One species, *Culex quinquefasciatus* (96 pools) was found to be WNV+. Four pools of unidentified Culex spp also tested positive for WNV; these were likely to have been *Cx quinquefasciatus* as well. Two pools tested positive for EEE.

| County  | # mosquitoes<br>submitted | # WNV+ pools | MIR   |
|---------|---------------------------|--------------|-------|
| Brooks  | 50                        |              |       |
| Camden  | 6177                      |              |       |
| Chatham | 34298                     | 45           | 1.31  |
| Cook    | 50                        |              |       |
| DeKalb  | 6450                      | 29           | 4.50  |
| Echols  | 50                        |              |       |
| Fulton  | 6288                      | 21           | 3.34  |
| Glynn   | 14875                     |              |       |
| Irwin   | 50                        |              |       |
| Lanier  | 50                        |              |       |
| Liberty | 276                       |              |       |
| Lowndes | 13604                     | 4            | 0.29  |
| Tift    | 20                        | 1            | 50.00 |
| Turner  | 19                        |              |       |
| TOTAL   | 82257                     | 100          |       |

2022 WNV+ pools

| Species              | 3-2  | 3-5  | 8-1  | 9-1   |
|----------------------|------|------|------|-------|
| Ae. albopictus       |      | 38   |      |       |
| Ae. vexans           |      |      |      | 1     |
| An. crucians         |      |      |      | 3     |
| Cq. perturbans       |      |      | 2727 | 192   |
| Cs. melanura         |      |      | 1482 | 51    |
| Culex spp.           |      |      |      | 1537  |
| Cx. coronator        |      |      | 56   |       |
| Cx. erraticus        |      |      |      | 992   |
| Cx. nigripalpus      |      |      | 4337 | 2475  |
| Cx. quinquefasciatus | 6288 | 6412 | 4108 | 50305 |
| Cx. restuans         |      |      | 1032 | 55    |
| Ma. titillans        |      |      | 148  |       |
| Oc. triseriatus      |      |      | 3    | 15    |

Tested Mosquitoes (sum)

#### WNV+ mosquito pools

| Month       | Chatham | DeKalb | Fulton | Lowndes | Tift |
|-------------|---------|--------|--------|---------|------|
| June        |         | 1      |        | 4       | 1    |
| July        | 31      | 13     | 7      |         |      |
| August      | 11      | 15     | 12     |         |      |
| September   | 2       |        | 2      |         |      |
| October     | 1       |        |        |         |      |
| Grand Total | 45      | 29     | 21     | 4       | 1    |

#### EEE+ mosquito pools

| Species        | Lowndes | Grand Total |
|----------------|---------|-------------|
| Cq. perturbans | 1       | 1           |
| Cs. melanura   | 1       | 1           |
| Grand Total    | 2       | 2           |



In 2022, the first WNV+ mosquitoes were detected in DeKalb County in late June. The last WNV+ pool was collected in Chatham in early October. Peaks in numbers of WNV+ pools occurred in July and August. Two WNV+ pools were collected from a CDC light trap. The rest (98) of the WNV+ mosquitoes were caught in gravid traps.

The Vector Index (VI) equals the MIR times the number of vectors per trap night . It is a Measure of infectivity that takes into account the following information:

- Vector species composition Key species carrying West Nile virus in our region.
- Vector species population density Vector abundance relative to trapping effort (vectors per trap night).



 Vector species infection rate – Proportion of vector population infected with WNV (MIR).



The VI is an objective method of following trends in mosquito infection rates, adjusted for mosquito abundance in the area.

The Minimum Infection Rate or MIR = (# WNV+ Pools/Total # Mosquitoes Tested) X 1000. The WNV Index is the MIR multiplied by the number of mosquitoes per trap night. An MIR of 0 suggests that there is no viral activity in the area. An MIR of 0.1 to 3.9 indicates that some viral activity is present, and increased vigilance and testing are needed. An MIR of 4.0 or above means that a high level of viral activity is present, human infections are imminent (if not already present), and prompt action is required.

The monthly MIR for Georgia in 2022 ranged from 0.13 to 2.96, with an average of 1.22.

| year | WNV Index | WNV+ Pools | human cases |
|------|-----------|------------|-------------|
| 2001 | 146.3     | 31         | 6           |
| 2002 | 106.6     | 57         | 37          |
| 2003 | 50.7      | 105        | 60          |
| 2004 | 40.7      | 126        | 24          |
| 2005 | 17.7      | 67         | 24          |
| 2006 | 31.5      | 81         | 10          |
| 2007 | 29.9      | 75         | 60          |
| 2008 | 25.3      | 50         | 12          |
| 2009 | 13.7      | 24         | 6           |
| 2010 | 47.7      | 99         | 14          |
| 2011 | 179.6     | 397        | 26          |
| 2012 | 64.3      | 125        | 117         |
| 2013 | 72.0      | 150        | 20          |
| 2014 | 43.6      | 56         | 13          |
| 2015 | 37.00     | 40         | 17          |
| 2016 | 22.80     | 36         | 13          |
| 2017 | 148.00    | 276        | 64          |
| 2018 | 202.30    | 310        | 38          |
| 2019 | 113.40    | 243        | 16          |
| 2020 | 24.60     | 59         | 12          |
| 2021 | 11.50     | 31         | 5           |
| 2022 | 50.70     | 100        | 23          |

| 2001-2021 | human<br>cases | WNV+<br>mosquito<br>pool | veterinary<br>case | positive<br>bird |
|-----------|----------------|--------------------------|--------------------|------------------|
| total     | 615            | 2695                     | 352                | 1904             |
| mean/year | 28.0           | 122.5                    | 16.0               | 86.5             |

| year  | total pools | WNV+  | % WNV+ | human cases |
|-------|-------------|-------|--------|-------------|
| 2001  | 597         | 31    | 5.2%   | 6           |
| 2002  | 4032        | 57    | 1.4%   | 37          |
| 2003  | 6177        | 105   | 1.7%   | 60          |
| 2004  | 10161       | 126   | 1.2%   | 24          |
| 2005  | 15248       | 67    | 0.4%   | 24          |
| 2006  | 4785        | 81    | 1.7%   | 10          |
| 2007  | 6513        | 75    | 1.2%   | 60          |
| 2008  | 6383        | 50    | 0.8%   | 12          |
| 2009  | 4446        | 24    | 0.5%   | 6           |
| 2010  | 5990        | 99    | 1.7%   | 14          |
| 2011  | 7622        | 397   | 5.2%   | 26          |
| 2012  | 6042        | 125   | 2.1%   | 117         |
| 2013  | 7453        | 150   | 2.0%   | 20          |
| 2014  | 5038        | 56    | 1.1%   | 13          |
| 2015  | 3366        | 40    | 1.2%   | 17          |
| 2016  | 5620        | 36    | 0.6%   | 13          |
| 2017  | 6419        | 276   | 4.3%   | 64          |
| 2018  | 6599        | 310   | 4.7%   | 38          |
| 2019  | 5532        | 243   | 4.4%   | 16          |
| 2020  | 6015        | 59    | 1.0%   | 12          |
| 2021  | 7375        | 31    | 0.4%   | 5           |
| 2022  | 3611        | 100   | 2.8%   | 23          |
|       |             |       |        |             |
| MEAN  | 6137.5      | 115.4 | 2.1%   | 28.0        |
| TOTAL | 135024      | 2538  | 45.6%  | 617         |



| year | WNV+ pools | EEE+ pools | counties doing<br>surveillance | # counties testing | # WNV+ counties | total mosquito pools tested | % WNV+ | Human WNV+ |
|------|------------|------------|--------------------------------|--------------------|-----------------|-----------------------------|--------|------------|
| 2001 | 30         |            | 2                              | 2                  | 1               | 597                         | 5.0%   | 6          |
| 2002 | 91         |            | 11                             | 11                 | 6               | 4032                        | 2.3%   | 36         |
| 2003 | 106        | 1          | 26                             | 26                 | 6               | 6177                        | 1.7%   | 55         |
| 2004 | 126        | 2          | 56                             | 56                 | 7               | 10161                       | 1.2%   | 23         |
| 2005 | 67         | 8          | 55                             | 55                 | 5               | 15248                       | 0.4%   | 24         |
| 2006 | 81         |            | 28                             | 28                 | 5               | 4785                        | 1.7%   | 11         |
| 2007 | 75         |            | 28                             | 28                 | 7               | 6513                        | 1.2%   | 55         |
| 2008 | 51         | 1          | 28                             | 28                 | 4               | 6383                        | 0.8%   | 12         |
| 2009 | 24         |            | 26                             | 26                 | 4               | 4446                        | 0.5%   | 6          |
| 2010 | 99         | 3          | 22                             | 22                 | 5               | 5990                        | 1.7%   | 14         |
| 2011 | 438        |            | 19                             | 19                 | 8               | 7622                        | 5.7%   | 25         |
| 2012 | 125        | 3          | 12                             | 6                  | 5               | 6042                        | 2.1%   | 117        |
| 2013 | 166        | 1          | 13                             | 6                  | 6               | 7453                        | 2.2%   | 20         |
| 2014 | 56         | 2          | 15                             | 6                  | 4               | 5038                        | 1.1%   | 13         |
| 2015 | 40         |            | 13                             | 6                  | 3               | 3366                        | 1.2%   | 15         |
| 2016 | 36         |            | 60                             | 6                  | 2               | 5620                        | 0.6%   | 13         |
| 2017 | 276        | 2          | 159                            | 5                  | 4               | 6419                        | 4.3%   | 63         |
| 2018 | 310        | 3          | 159                            | 6                  | 5               | 6598                        | 4.7%   | 38         |
| 2019 | 243        |            | 159                            | 12                 | 5               | 5532                        | 4.4%   | 16         |
| 2020 | 59         |            | 142                            | 9                  | 4               | 6025                        | 1.0%   | 12         |
| 2021 | 31         | 1          | 103                            | 16                 | 5               | 7357                        | 0.4%   | 5          |
| 2022 | 100        | 2          | 79                             | 14                 | 5               | 3611                        | 2.8%   | 23         |

There are two general categories within which mosquito breeding habitats exist: natural mosquito breeding habitats and man-made mosquito breeding habitats. Female mosquitoes lay their eggs either on water or on soils that are periodically flooded. These breeding areas can be found in habitats that exist naturally, such as within a pond or flood plain, or in habitats that have been created by humans, such as bird baths, water-filled tires, or catch basins. There are two general categories within which mosquito breeding habitats exist: natural mosquito breeding habitats. Female mosquitoes lay their eggs either on water or on soils that are periodically flood-ed. These breeding areas can be found in habitats. Female mosquitoes lay their eggs either on water or on soils that are periodically flood-ed. These breeding areas can be found in habitats that exist naturally, such as within a pond or flood plain, or in habitats that are periodically flood-ed. These breeding areas can be found in habitats that exist naturally, such as within a pond or flood plain, or in habitats that are periodically flood-ed. These breeding areas can be found in habitats that exist naturally, such as within a pond or flood plain, or in habitats that have been created by humans, such as bird baths, water-filled tires, or catch basins.







### **Mosquito Surveillance: Untested Mosquitoes**

After the loss of WNV funding, mosquitoes collected during surveillance by the GDPH were no longer sent for testing. These mosquitoes are identified and the data are shared with the county mosquito control agency to assist with control efforts. ZIKV funding, followed by Hurricane Crisis CoAg funding allowed GDPH to create 5 Vector Surveillance Coordinator positions and hire a second entomologist in order to increase our ability to do surveillance and to respond to mosquito complaints and arboviral disease issues. Between 2017-2019, some level of surveillance was done in every county in Georgia. Due to loss of funding resulting in the loss of the Vector Surveillance Coordinators in August 2020, and to the continuing COVID-19 response, surveillance was only done in 74 counties in 2022.

| Month       | # mosquitoes |
|-------------|--------------|
| January     | 295          |
| February    | 607          |
| March       | 2362         |
| April       | 1733         |
| May         | 3086         |
| June        | 4933         |
| July        | 2748         |
| August      | 4797         |
| September   | 5150         |
| October     | 2385         |
| November    | 2679         |
| December    | 1317         |
| Grand Total | 32092        |

| Month       | # trap nights |
|-------------|---------------|
| January     | 69            |
| February    | 57            |
| March       | 193           |
| April       | 181           |
| May         | 229           |
| June        | 395           |
| July        | 395           |
| August      | 509           |
| September   | 479           |
| October     | 288           |
| November    | 131           |
| December    | 84            |
| Grand Total | 3010          |

| Month     | # mosquitoes/trap night |
|-----------|-------------------------|
| January   | 4.28                    |
| February  | 10.65                   |
| March     | 12.24                   |
| April     | 9.57                    |
| May       | 13.48                   |
| June      | 12.49                   |
| July      | 6.96                    |
| August    | 9.42                    |
| September | 10.75                   |
| October   | 8.28                    |
| November  | 20.45                   |
| December  | 15.68                   |
| Mean      | 11.19                   |

# **Untested Mosquitoes**

| Species              | # mosquitoes |
|----------------------|--------------|
| Ae. aegypti          | 12           |
| Ae. albopictus       | 5089         |
| Ae. cinereus         | 19           |
| Ae. dupreei          | 3            |
| Ae. vexans           | 785          |
| An. barberi          | 5            |
| An. crucians         | 344          |
| An. punctipennis     | 685          |
| An. quadrimaculatus  | 123          |
| Cq. perturbans       | 234          |
| Cs. inornata         | 8            |
| Cs. melanura         | 24           |
| Cx. coronator        | 425          |
| Cx. erraticus        | 631          |
| Cx. nigripalpus      | 653          |
| Cx. peccator         | 5            |
| Cx. pilosus          | 8            |
| Cx. quinquefasciatus | 16531        |
| Cx. restuans         | 583          |
| Cx. salinarius       | 620          |
| Cx. territans        | 66           |

| Species            | # mosquitoes |
|--------------------|--------------|
| Oc. atlanticus     | 462          |
| Oc. atropalpus     | 6            |
| Oc. canadensis     | 49           |
| Oc. dupreei        | 16           |
| Oc. fulvus pallens | 17           |
| Oc. infirmatus     | 190          |
| Oc. japonicus      | 271          |
| Oc. mitchellae     | 10           |
| Oc. sollicitans    | 9            |
| Oc. sticticus      | 41           |
| Oc. taeniorhynchus | 858          |
| Oc. triseriatus    | 32           |
| Oc. trivittatus    | 5            |
| Or. alba           | 3            |
| Or. signifera      | 4            |
| Ps. ciliata        | 324          |
| Ps. columbiae      | 280          |
| Ps. cyanescens     | 270          |
| Ps. ferox          | 209          |
| Ps. horrida        | 3            |
| Ps. howardii       | 31           |
| Ps. mathesoni      | 1            |
| Tx. rutilus        | 3            |
| Ur. lowii          | 5            |
| Ur. sapphirina     | 35           |

| Tested Mosquitoes    |              |  |
|----------------------|--------------|--|
| Species              | # mosquitoes |  |
| Ae. albopictus       | 38           |  |
| Ae. vexans           | 1            |  |
| An. crucians         | 3            |  |
| Cq. perturbans       | 2919         |  |
| Cs. melanura         | 1533         |  |
| Culex spp.           | 1537         |  |
| Cx. coronator        | 56           |  |
| Cx. erraticus        | 992          |  |
| Cx. nigripalpus      | 6812         |  |
| Cx. quinquefasciatus | 67113        |  |
| Cx. restuans         | 1087         |  |
| Ma. titillans        | 148          |  |
| Oc. triseriatus      | 18           |  |









| Aedes albopictus |                 |                       |
|------------------|-----------------|-----------------------|
| Year             | earliest report | earliest surveillance |
| 2001             | late Aug        | late Aug              |
| 2002             | late April      | late Jan              |
| 2003             | early April     | early Jan             |
| 2004             | early April     | late Feb              |
| 2005             | mid March       | early Jan             |
| 2006             | late April      | early March           |
| 2007             | mid May         | late March            |
| 2008             | mid June        | late March            |
| 2009             | mid July        | mid Feb               |
| 2010             | mid June        | late Feb              |
| 2011             | mid June        | late Feb              |
| 2012             | mid April       | early Jan             |
| 2013             | early May       | early Jan             |
| 2014             | mid May         | mid Feb               |
| 2015             | late May        | early March           |
| 2016             | late March      | early Jan             |
| 2017             | mid April       | early Jan             |
| 2018             | early Jan       | early Jan             |
| 2019             | early Feb       | early Feb             |
| 2020             | early May       | early May             |
| 2021             | mid January     | early Jan             |
| 2022             | late March      | early Jan             |





Aedes albopictus



# Aedes aegypti

| Year | earliest report | earliest surveillance |
|------|-----------------|-----------------------|
| 2005 | late Oct        | mid July              |
| 2006 | early Sept      | late July             |
| 2011 | early Sept      | early Sept            |
| 2012 | mid July        | mid July              |
| 2013 | mid Aug         | early July            |
| 2014 | early July      | early July            |
| 2015 | early July      | early July            |
| 2016 | late July       | late July             |
| 2017 | early June      | early June            |
| 2018 | early May       | mid Feb               |
| 2019 | Late July       | Late July             |
| 2020 | early May       | early May             |
| 2021 | early Sept      | early Sept            |
| 2022 | mid Sept        | mid May               |

## WNV Activity Map

This map shows the incidence of human West Nile virus neuroinvasive disease (e.g., meningitis, encephalitis, or acute flaccid paralysis) by state for 2021 with shading ranging from 0.01-0.24, 0.25-0.49, 0.50-0.99, and greater than 1.00 per 100,000 population.



# West Nile Virus Neuroinvasive Disease Incidence by State - United States, 2022 (as of January 10, 2023)



\*WNV human disease cases or presumptive viremic blood donors. Presumptive viremic blood donors have a positive screening test which has not necessarily been confirmed.

<sup>†</sup>WNV veterinary disease cases, or infections in mosquitoes, birds, or sentinel animals.



West Nile Virus Activity by State – United States, 2022 (as of January 10, 2023)









The epidemic curve (epi curve) shows the progression of an outbreak over time.

Constructing epidemic curves is a common and very important practice in epidemiology. An epidemic curve, also known as an epi curve or epidemiological curve, is a statistical chart used in epidemiology to visualize the onset of a disease outbreak. It can help with the identification of the mode of transmission of the disease. It can also show the disease's magnitude, whether cases are clustered or if there are individual case outliers, its trend over time, and its incubation period.

For more information on vector-borne diseases and epi curves, go to https://www.ncbi.nlm.nih.gov/books/NBK52945/.

THANK YOU to the district and county public and environmental health employees, mosquito control workers, interns, university students/staff, veterinarians, and healthcare providers who collected much of the data summarized in this document.

# GDPH Vector-Borne & Zoonotic Diseases Team

- Rosmarie Kelly, PhD (Entomologist)
- "Tiffany" Thuy-Vi Thi Nguyen, PhD (Entomologist)
- Shawna Stuck (Epidemiologist)
- Julie Gabel, DVM

