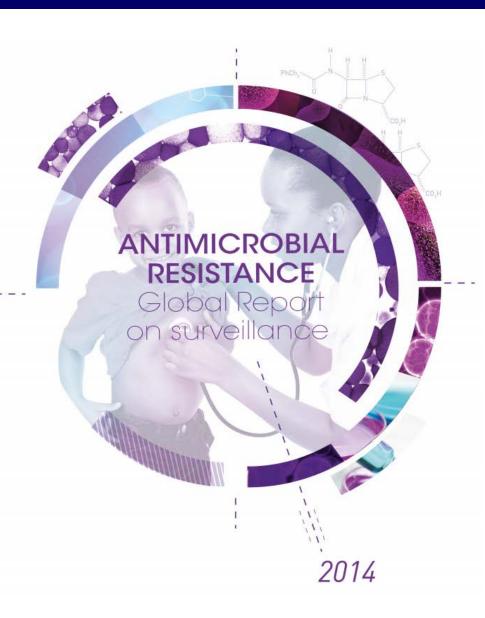
Carbapenem-resistant Enterobacteriaceae (CRE) and the Environment: A Pathway to Infection?

> Jesse T. Jacob, MD Assistant Professor of Medicine Emory University School of Medicine

Jesse T. Jacob Personal/Professional Financial Relationships with Industry

External Industry Relationships	Company Name	Role
Equity, stock, or options in biomedical industry companies or publishers	None	
Board of Directors or officer	None	
Royalties from Emory or from external entity	None	
Industry funds to Emory for my research	None	
Other	None	

Objectives

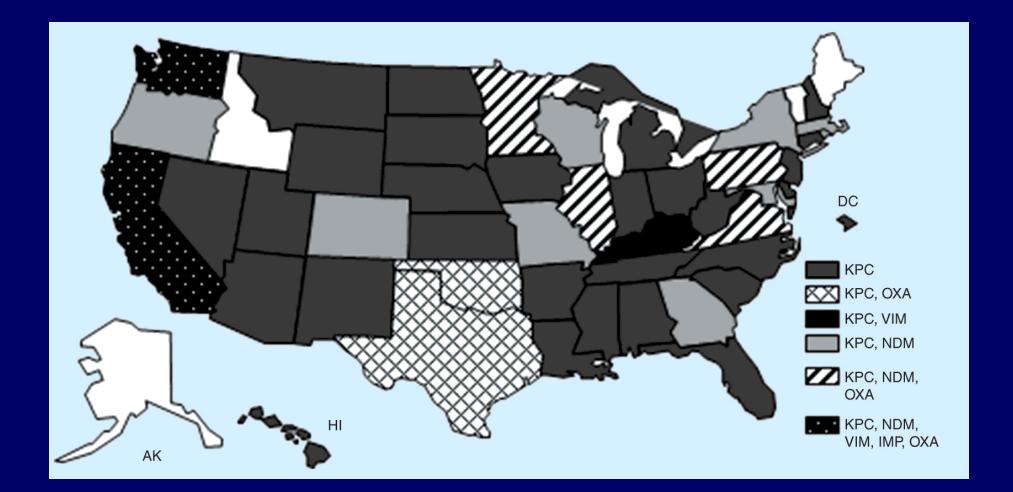

- Discuss the increasing recognition of the environment in cross-transmission of pathogens
- Synthesize the evidence for the role of the environment in the transmission of CRE

	Enterobacter cloacae				
Drug	Interp	MIC mcg/mL	Interpreta		
Amikacin \$			SUSCEPTIBLE		
Ampicillin \$			Resistant		
Ampicillin/Sulbactam \$\$			Resistant		
Aztreonam \$\$\$\$			Resistant		
Cefazolin \$			Resistant		
Cefepime \$\$			Resistant		
Cefoxitin \$\$			Resistant		
Ceftazidime \$\$			Resistant		
Ceftriaxone \$			Resistant		
Cefuroxime \$\$			Resistant		
Colistin \$\$\$		0.064			
Gentamicin \$			SUSCEPTIBLE		
Levofloxacin \$			Resistant		
Meropenem \$\$			Resistant		
Piperacillin/Tazobactam \$\$			Resistant		
Tigecycline \$\$\$\$	Intermediate				
Tobramycin \$			Intermediate		
Trimethoprim/Sulfa \$			Resistant		

CRE HE VITAL SIGNS REPORT

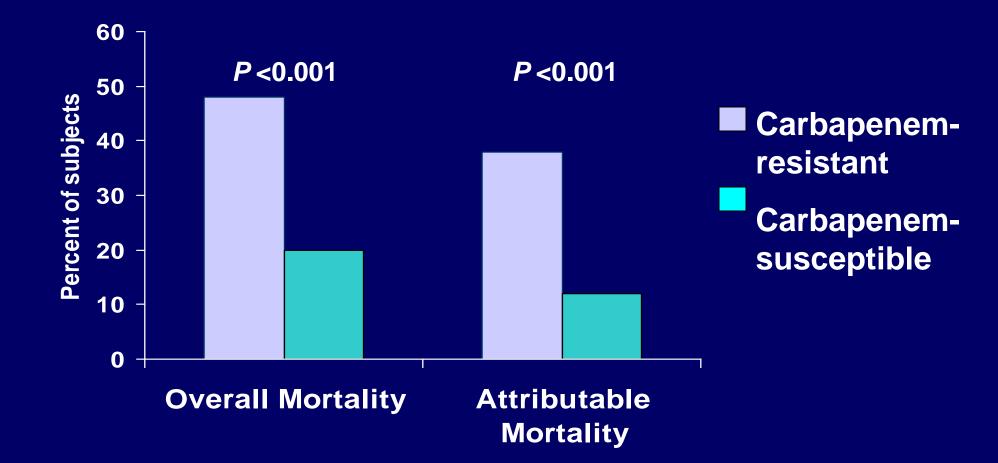
Enterobacteriaceae

- Large family of bacteria
- Normal human (animal) gut microbiota
 Most common: *E. coli* and *Klebsiella pneumoniae*
- Agents of common and serious infections in both healthcare setting and the community
 - Urinary tract infections, post-operative infections, pneumonia, bloodstream infections, meningitis, typhoid, plague, dysentry


Carbapenems\Carbapenem Resistance

- Carbapenems (i.e. imipenem)
 - One of the broadest spectrum antibiotics
 - "Antibiotics of last resort"
- Carbapenem resistance
 - Potentially transferrable (plasmid mediated)
 - Two major mechanisms
 - Carbapenemase
 - Porin mutation + β -lactamase

CRE in the National Healthcare Safety Network (NHSN), 2009-2010


	Central line- associated bloodstream infections	Catheter- associated urinary tract infections	Ventilator- associated pneumonia	Surgical site infections
E. coli	1.9%	2.3%	3.5%	2.0%
<i>Klebsiella</i> spp.	12.7%	12.5%	11.2%	8.2%

CRE in the US, 2013

Guh et al. Expert Rev. Anti Infect. Ther. 2014;12:565–580

Mortality in CRE Bacteremia

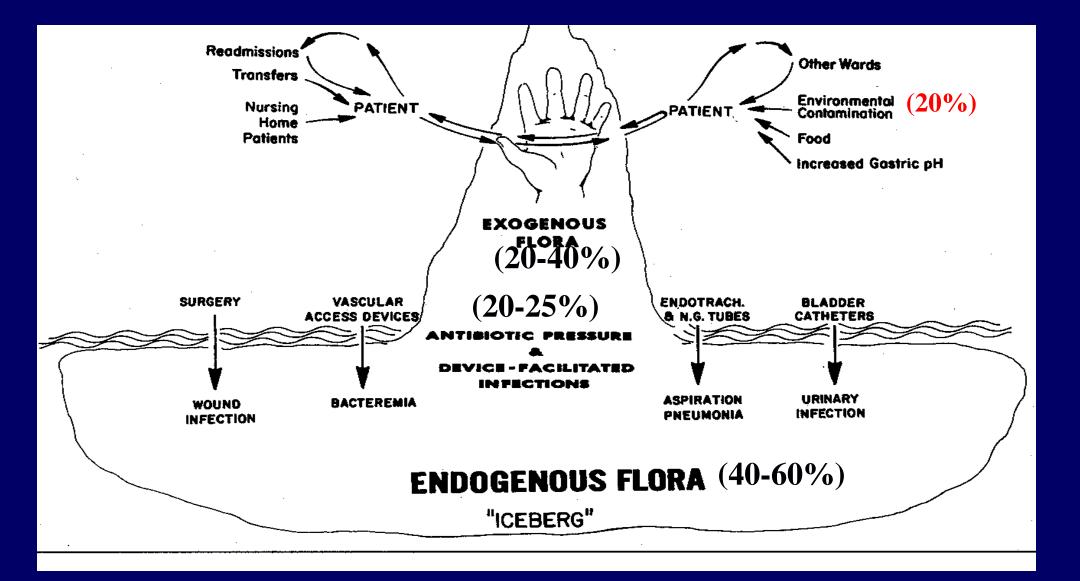
Patel G et al. Infect Control Hosp Epidemiol 2008;29:1099-1106.

CRE Spreads Through Contact

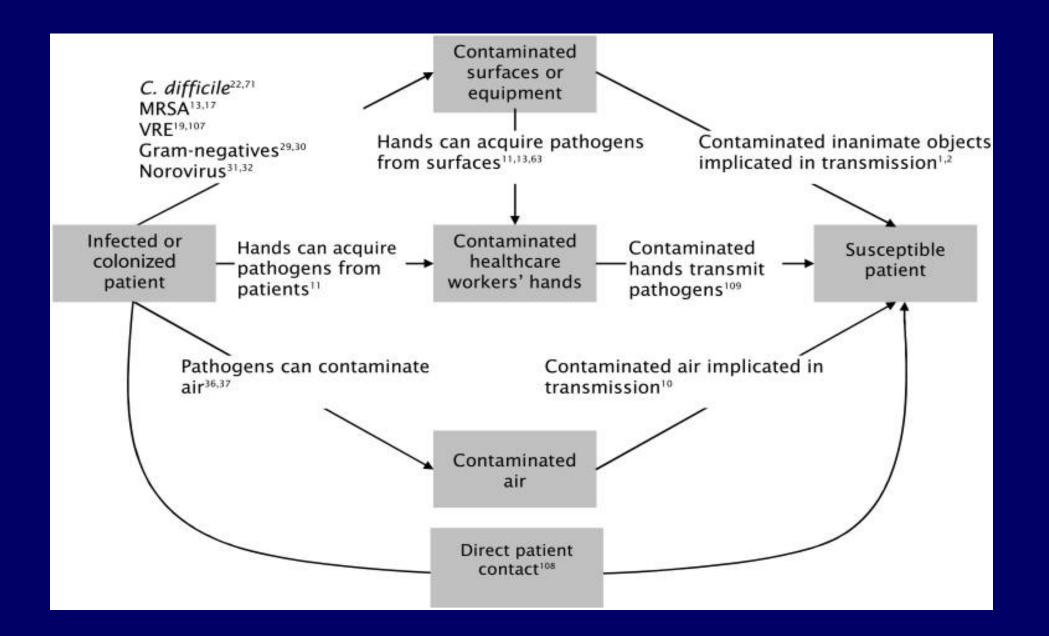
		Sa	mples
	Samples	Conta	aminated
	Ν	n	%
Gown/gloves	96	10	10.4
Environment	19	2	10.5

	Frequency of contamination, %	
Variable	(proportion) of opportunities	Р
HCW activity in room		
Physical examination	13.3 (21/158)	.59
Wound care	36.4 (4/11)	.05
Manipulation of catheter or drain	37 (10/27)	<.001
Taking vital signs	16.3 (8/49)	.61
Touching intravenous pump or tubing	20 (11/55)	.15
Touching bed rail	22.8 (18/79)	.006
Touching supply cart	17 (14/82)	.33
Longer than 5-minute stay in patient room	16.8 (18/107)	.26
More than 2 patient contacts	25 (25/100)	< 001
More than 2 environmental contacts	23.7 (23/97)	<.001

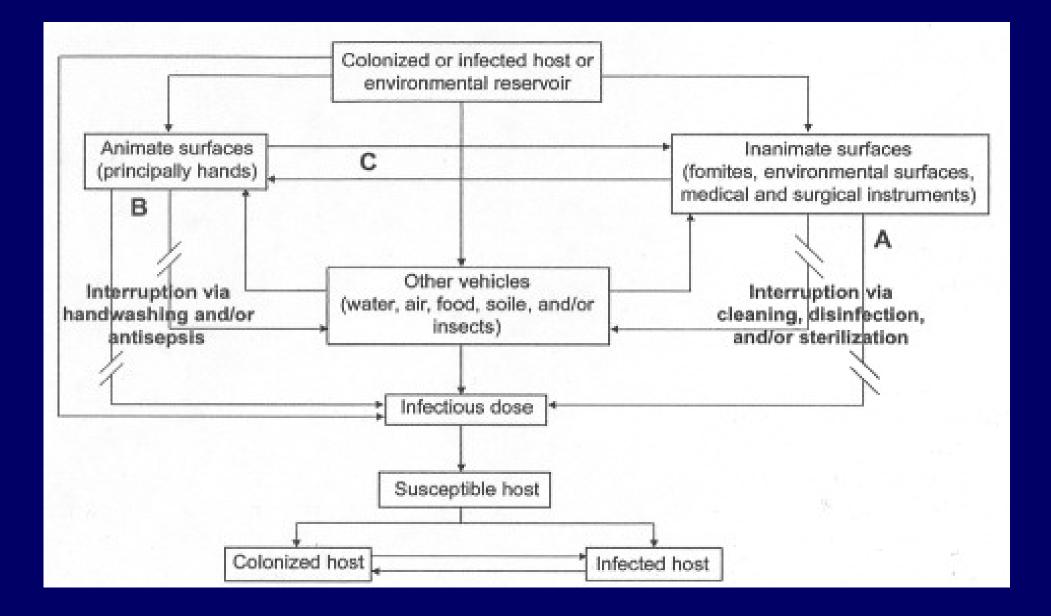
Relationships between microbial surface contamination and three types of disease, gastrointestinal, cutaneous, and respiratory, are discussed in this presentation. Several outbreaks are described in which contaminated surfaces were involved, and the author points out the need for the epidemiologist to consider the potential implications of such contamination.


THE RELATION OF SURFACE CONTAMINATION TO THE TRANSMISSION OF DISEASE

Lieutenant Warren R. Sanborn, MSC, USN


VOL. 53, NO. 8, A.J.P.H. AUGUST, 1963

Modes of Transmission of Infectious Agents

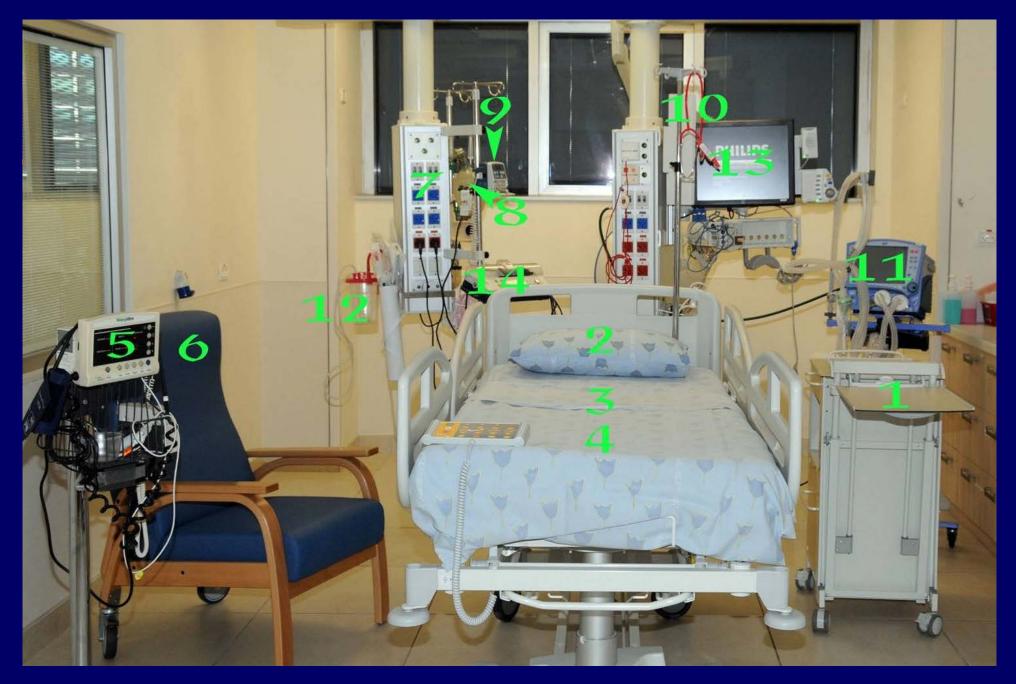

- Contact
 - Direct (body-to-body)
 - Indirect (e.g., fomites/environment, HCWs' hands)
- Air
 - Large Droplet (>5µm; travel 3 feet)
 - Small "Droplet" (≤5µm; airborne)
- Common source (Water)
- Endogenous

Weinstein RA. Am J Med 1991;91(suppl 3B):179S

Otter JA, et al. Infect Control Hosp Epidemiol 2011;32:687-699

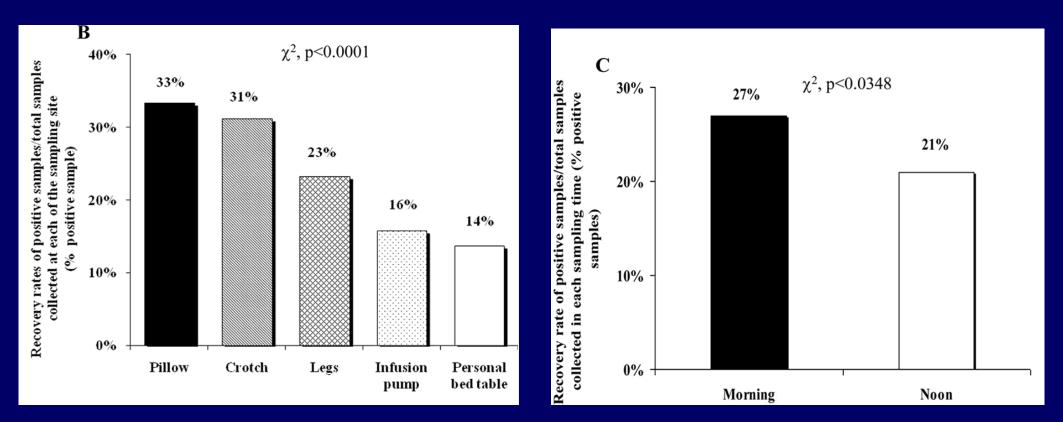
Rutala WA, Weber DJ. In: "SHEA Practical Healthcare Epidemiology", 3rd ed, 2010.

A Framework


- Environmental contamination frequent
- Persists in the environment
- HCW hand contamination
 - Correlated to environmental burden
- Viability preserved
- Increased acquisition risk if prior room occupant +
- Molecular link of environmental and clinical isolates
- Improved cleaning/disinfection reduces infection

VRE and Environmental Contamination

X represents VRE culture positive sites


Hayden et al. ICAAC, 2001. Abstract K-1334

Lerner et al. J Clin Microbiol. 2013;51: 177–181.

KPC in 298 Environmental Samples from Vicinity of 34 Known Carriers

224/928 (24%) positive for CRE

CRE from 11 Facilities in 4 States

Table 1: Percent Recovery of MDROs from Routine & Terminal Cleaned Rooms (n = total rooms positive)

	All MDROs	MRSA	VRE	A. baumannii	K. pneumoniae	C. difficile
Routine	52.2	12.4	25.7	9.7	11.5	16.8
(n = 113)	(59)	(14)	(29)	(11)	(13)	(19)
Terminal	34.0	9.4	9.4	3.8	9.4	13.2
(n = 53)	(18)	(5)	(5)	(2)	(5)	(7)
All Rooms (n = 166)	46.4 (77)	11.5 (19)	20.5 (34)	7.8 (13)	10.8 (18)	15.7 (26)

When Present, CRE Burden is High

CRE in the Environment of 15 **Rooms of Colonized Patients**

Room Site Cultured (No.)	CRE Positive, No. (%) ^a	CRE, mean CFU (range) ^b
Bed rail (15)	2 (13.3)	45 (43-47)
Overbed table (15)	1 (6.7)	3
Chair #1 arm (12)	0 (0.0)	
Sink (15)	2 (13.3)	14.5 (11-18)
Toilet (11)	2 (18.2)	7 (4–10)
Bathroom floor (10)	1 (10.0)	5
Supply cart (11)	1 (9.1)	2
Linen hamper (12)	0 (0.0)	
Mobile computer (3)	0 (0.0)	
Chair #2 arm (3)	0 (0.0)	
Bedside table (3)	0 (0.0)	
Toilet cabinet (4)	0 (0.0)	
Floor outside toilet cabinet (4)	1 (25.0)	2
Ventilator counter (1)	0 (0.0)	
Total (119) ^c	10 (8.4)	5.1 (2-47)

CFU, colony forming units; CRE, carbapenem-resistant Enterobacteriaceae.

^aConsidered positive if ≥ 1 of the 5 Rodac plates had positive growth (ie, area sampled = 120 cm²).

^bMean and range calculated only for CRE culture positive sites.

^cFor one site cultured, technical difficulties prevented assessing growth. Thus total was 119 sites instead of 120 sites.

Anatomic Sites of Patient Colonization and Environmental Contamination with Klebsiella pneumoniae Carbapenemase-Producing Enterobacteriaceae at Long-Term **Acute Care Hospitals**

Sterile, moistened double Dacron swabs were also used to ^{Ca} culture environmental sites in occupied patient rooms and in common areas. Sites varied according to facility but included dresser, call button, bed rails, overbed table, infusion pump control panel, ventilator control panel, toilet flusher, OBJECTIVE. carbapenema computer keyboard, and medicine cabinet door. Common-DESIGN, SET area sites included equipment in the physical therapy gym long-term ac rooms and c and the hemodialysis room and items in staff break rooms. known to be A 10 × 10-cm area of the surface of each site was swabbed RESULTS. 1 ventilated, 32 when feasible. For smaller surfaces, the entire site was recovered from was more co swabbed. For large surfaces, high-touch regions were single most s swabbed. Rooms and common areas were cleaned daily with [CI], 68%–97 Only 2 (0.5% a quaternary ammonium compound. The time from cleaning CONCLUSION Skin coloniza to environmental sampling was not recorded. for control of KPC-producing Enterobacteriaceae in LIACHS.

lla pneumoniae

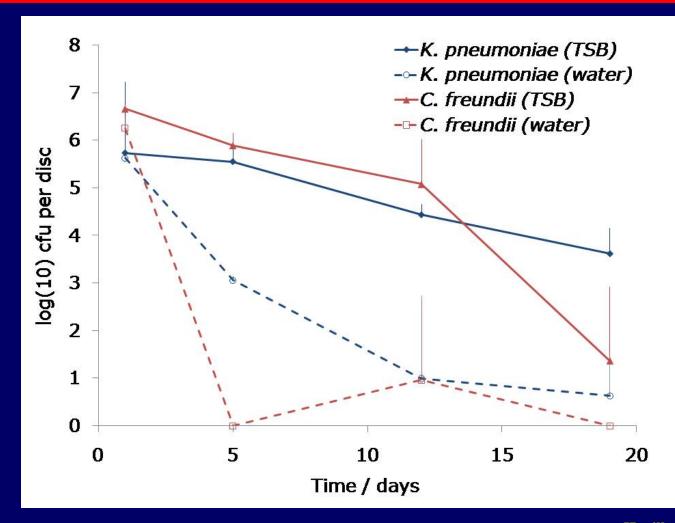
S;1

ronments at 6 es in patients' for covariates

: mechanically robacteriaceae n colonization swab was the dence interval [,86%-100%).

nized patients. l interventions

Infect Control Hosp Epidemiol 2013;34(1):56-61



A Framework

Environmental contamination frequent

- Persists in the environment
- HCW hand contamination
 - Correlated to environmental burden
- Viability preserved
- Increased acquisition risk if prior room occupant +
- Molecular link of environmental and clinical isolates
- Improved cleaning/disinfection reduces infection

Survival of CRE on Dry Surfaces

Havill et al. ICHE 2014; 35:445-447

"Down the Drain": CRE ICU Sinks

Patients

– 10 clinical isolates and 1 surveillance isolate with bla_{IMP-4} gene over 30 months

• Environment

- *S. marcescens* in grate/drain of 8 sinks
 - Molecular typing relatedness to clinical isolates
- Tap water cultures negative.
- Failed 6 attempts to clean and decontaminate sinks using detergents and steam

A Suboptimal Process

- Aged (2005), deteriorating porcelain
- Shallow sink with water over drain
- Sink used for clinical waste
- One brush used to clean all drains without disinfection

A Framework

Environmental contamination frequent Persists in the environment

- HCW hand contamination
 - Correlated to environmental burden
- Viability preserved
- Increased acquisition risk if prior room occupant +
 - Molecular link of environmental and clinical isolates
- Improved cleaning/disinfection reduces infection

Robert A. Weinstein, Section Editor

Managing Transmission of Carbapenem-Resistant Enterobacteriaceae in Healthcare Settings: A View From the Trenches

Tara N. Palmore and David K. Henderson

Hospital Epidemiology Service and the Office of the Deputy Director for Clinical Care, Clinical Center, National Institutes of Health, Bethesda, Maryland

In 2011, the National Institutes of Health Clinical Center experienced a cluster of infection and colonization caused by carbapenem-resistant *Klebsiella pneumoniae* among profoundly immunocompromised inpatients. This manuscript describes the approach and interventions that were implemented in an attempt to curtail the cluster. Interventions employed included engagement of all stakeholders involved in care of at-risk patients; detailed and frequent communication with hospital staff about issues relating to the outbreak; aggressive microbial surveillance; use of techniques that facilitate rapid identification of resistant organisms; rapid characterization of resistance mechanisms; whole-genome sequencing of outbreak isolates to characterize the spread and to investigate mechanisms of healthcare-associated spread; implementation of enhanced contact precautions for all infected or colonized patients; geographic and personnel cohorting; daily chlorhexidine gluconate baths; dedicating equipment to be used solely for cohorted patients and aggressive decontamination of equipment that had to be reused on uncohorted patients; monitoring adherence to infection control precautions, including unwavering attention to adherence to appropriate hand hygiene procedures; and attention to the details of environmental decontamination. In addition, the manuscript discusses some of the challenges associated with managing such an event, as well as a few of the unanticipated consequences associated with the aftermath of the case cluster.

<i>Table.</i> Interventions Used to Combat the Spread of CRE at the NIHCC				
Intervention	Basis	Comment		
Careful engagement of all stakeholders involved in the care of infected and colonized patients	Guideline (1)	Critical to successful implementation of prevention and control measures		
Communication with hospital staff, campus staff, local and state public health authorities, and patients about issues relating to the outbreak that are relevant to each group Aggressive microbial surveillance	Guideline (1)	Critical to successful engagement of stakeholders		
Microbial surveillance of all patients who are admitted to medical, surgical, or pediatric wards of the hospital, with empirical isolation and additional surveillance of patients who have been hospitalized in the United States in the past week or abroad in the past 6 mo	Guideline (1)	Crucial for identifying new cases and preventing transmission from patients who have had potentially high-risk exposures		
Targeted, twice-weekly microbial surveillance of patients hospitalized in the highest-risk units	Empirical	Frequency driven by the severity of illness/ immunosuppression		
Monthly whole-house microbial surveillance of all medical-surgical patients	Guideline (1)	Crucial for identifying new cases/transmission		
Use of selective media to identify resistant pathogens	Guideline (1)	Selective media are expensive		
Sampling multiple sites on each patient to decrease sampling error and capture different pathogens in their respective niches	Empirical	Driven by local microbiology; prior outbreaks of other multidrug-resistant organisms		
Rapid identification of resistant organisms (e.g., MALDI-TOF MS)	Routine at NIHCC	Equipment expensive; output extremely rapid and remarkably useful		
Rapid characterization of resistance mechanisms (for example, PCR testing for carbapenemase genes)	Guideline (1)	-		
Whole-genome sequencing to characterize the spread and investigate mechanisms of health care-associated spread	Investigational	Did not "unravel" our outbreak but identified silent transmission and changed our strategy (see text for details)		
Implementation of enhanced contact precautions for all infected or colonized patients	Empirical	Intensity of the intervention due to the severity of illness/immunosuppression		
Geographic and personnel cohorting	Guideline (1)	Difficult to implement for some categories of personnel		
Equipment dedicated to be used solely for cohorted patients, to the extent possible	Guideline (1)			
Daily chlorhexidine baths for patients	Guideline (1)	Unable to determine efficacy in our setting		
Monitoring adherence to all infection control precautions, including unwavering attention to performance of appropriate hand hygiene procedures	Empirical	Strategy was useful in prior outbreak (6), and implementation was associated with improved adherence		
Attention to the details of environmental disinfection, including consideration of use of new decontamination technologies (e.g., hydrogen peroxide vapor or ultraviolet light)	Empirical	Intensity of the intervention due to the severity of illness/immunosuppression of our patients; a minuscule inoculum may ultimately prove lethal		

CRE = carbapenem-resistant Enterobacteriaceae; MALDI-TOF MS = matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; NIHCC = National Institutes of Health Clinical Center; PCR = polymerase chain reaction.

What environmental interventions did the NIH Clinical Center make?

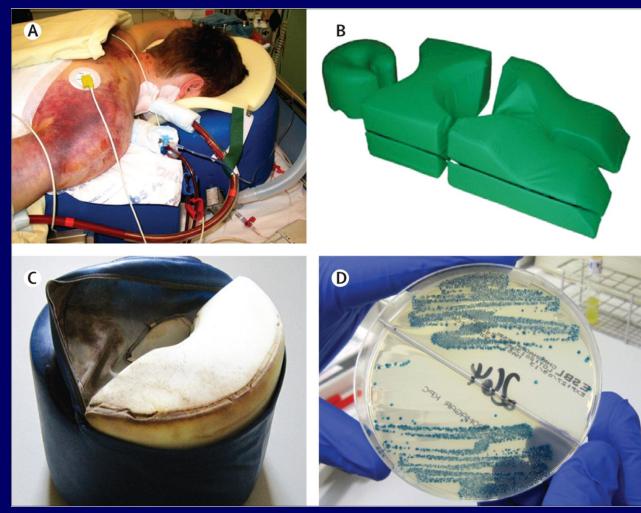
- Double disinfection of all high-touch surfaces with bleach wipes
- Hydrogen peroxide vapor decontamination
- Sink drains were removed and cleaned thoroughly, and bleach sprayed daily down drains on affected wards
- Built a wall to allow cohorting

Why such aggressive cleaning?

- Bed ?source in 1 transmission
- Ventilator grew KPC despite 3 prior rounds of manual cleaning and disinfection
- Cultures from 4 sink drains grew KPC
- 7/260 (3%) of environmental cultures KPC +
- Small inocula might transmit lethal infection to immunosuppressed patients

What worked at NIH?

"We emphasize that much of what we did in managing this outbreak is not evidence-based...We attempted to mitigate literally every risk we could identify and took the most conservative approach that was feasible in virtually every instance...We are not suggesting that our use of any of these interventions implies efficacy and underscore that we implemented all of them virtually simultaneously, so we have no way of knowing which of them were effective. "

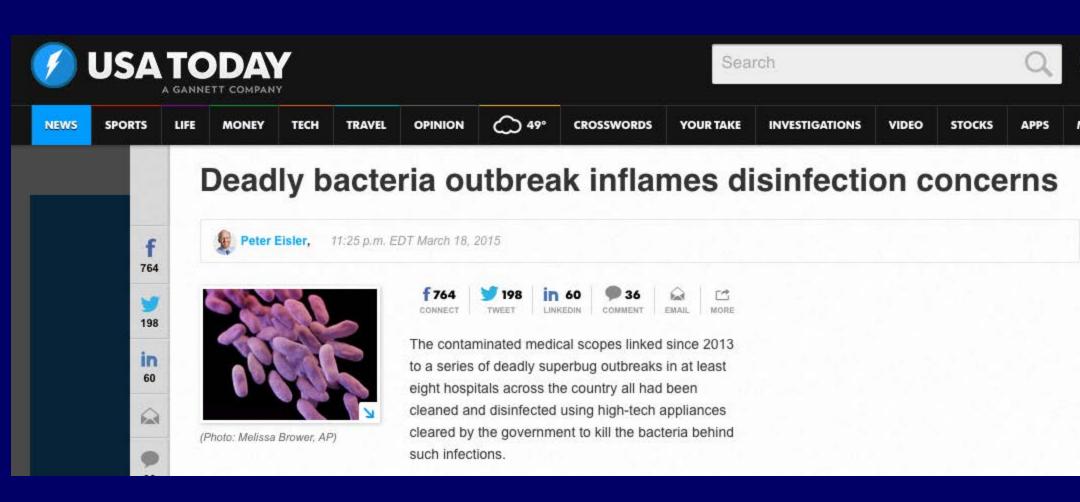

A Framework

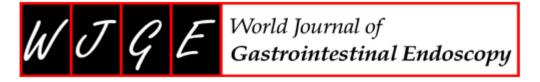
Environmental contamination frequent Persists in the environment

- HCW hand contamination
 - Correlated to environmental burden
- Viability preserved

Increased acquisition risk if prior room occupant + Molecular link of environmental and clinical isolates Improved cleaning/disinfection reduces infection

CRE Outbreak Linked to Contaminated Pillows




Lippmann et al. Lancet ID 2014;14:271-272

(a) Lowered/ closed forceps elevator

(b) Raised/ open forceps elevator

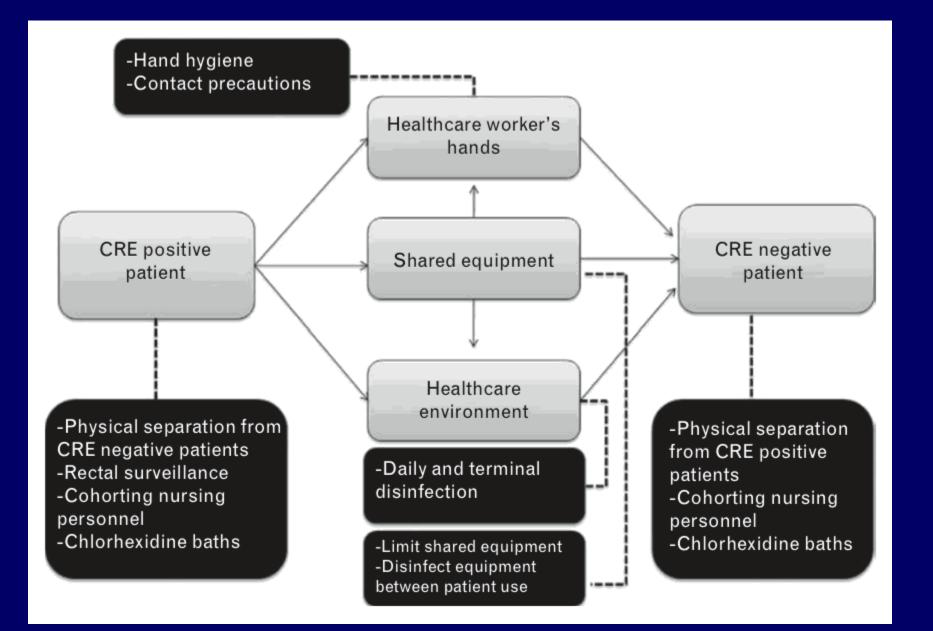
World J Gastrointes: Notes from the Field: New Delhi Metallo-B-Lactamase-Producing Escherichia coli Associated with Endoscopic Retrograde Cholangiopancreatography – Illinois, 2013 Risk of tran Weekly "superbugs_{January} 3, 2014 / 62(51);1051-1051

Lawrence F Mus

Infections with carbapenem-resistant Enterobacteriaceae (CRE)* are increasing among patients in medical facilities (1). CRE that produce Klebsiella oneumoniae carbapenemase (KPC) have been responsible for much of the increase in the United States. However, New Delhi metallo-β-lactamase (NDM)– producing CRE have the potential to add to this burden. Since first reported in 2009, through 2012, 27 patients with NDM-producing CRE have been confirme by CDC from isolates submitted by state laboratories. Since January 2013, a total of 69 patients with NDM-producing CRE have been identified in the United States; 44 patients were from northeastern Illinois.

From March to July 2013, nine patients with positive cultures for NDM-producing *Escherichia coli* (eight clinical cultures and one rectal surveillance culture) were identified in northeastern Illinois. An investigation was conducted to understand and prevent the transmission of NDM-producing CRE. A case was defin as an NDM-producing *E. coli* isolate, recovered from a patient in northeastern Illinois, with >85% similarity by pulsed-field gel electrophoresis (PFGE) to the outbreak strain, detected after January 1, 2013. Of the nine cases, eight were treated at the same hospital (hospital A). To determine risk factors for acquiri NDM-producing CRE, a case-control study was conducted. The eight patients cared for at hospital A were selected as case-patients; 27 controls were random selected from among 131 hospital A patients with negative surveillance cultures. A history of undergoing endoscopic retrograde cholangiopancreatography (ERCP)[†] at hospital A was strongly associated with case status (six of eight [75%] versus one of 27 [4%]; odds ratio = 78.0; 95% confidence interval = 6.0 >999.99).

After manual cleaning and high-level disinfection in an automated endoscope reprocessor, cultures were obtained from the ERCP endoscope used on five of t case-patients. NDM-producing *E. coli* and KPC-producing *K. pneumoniae* were recovered from the terminal section (the elevator channel) of the device.[§] The


coli isolate was highly related (>95%) to the outbreak strain by PFGE. Retrospective review and direct observation of endoscope reprocessing did not identification protocol. Previous studies have shown an association between ERCP endoscopes and transmission of multidrug-resistant bacteria; the design of the ERCP endoscopes might pose a particular challenge for cleaning and disinfection (2,3).

Among 91 ERCP patients who were initially notified that they had potential exposure to a culture-positive endoscope, 50 returned for rectal surveillance cultures. NDM-producing *E. coli* were recovered from 23 (46%). An additional 12 patients with NDM-producing CRE have been identified in northeastern Illinois, bringing the total during January–December 2013 to 44. In September 2013, as a result of the investigation, hospital A changed ERCP endoscope reprocessing from automated high-level disinfection to gas sterilization with ethylene oxide; no new cases with exposure to a gas-sterilized ERCP endoscope have been identified.

This investigation highlights the potential for CRE transmission following ERCP. Health-care facilities with CRE outbreaks should consider the possibility of ERCP-related transmission. If ERCP-related transmission of CRE is suspected, reprocessing and preventative maintenance procedures for ERCP endoscopes should be evaluated in consultation with the manufacturer of the endoscope and automated endoscope reprocessor, if used. In addition, expertise in the evaluation and prevention of CRE transmission are available at CDC and can be accessed via state and local health departments.

A Framework

Environmental contamination frequent Persists in the environment HCW hand contamination (gap) Correlated to environmental burden Viability preserved Increased acquisition risk if prior room occupant + Molecular link of environmental and clinical isolates Improved cleaning/disinfection reduces infection

Munoz-Price and Quinn. Curr Opin Infect Dis 2013, 26:378 – 387

Conclusions

- Environment important in CRE transmission
 - Extent and importance unclear since mostly based on outbreaks
- Environmental cleaning (including devices) should be a focus
- Ascertaining which intervention(s) works best should be a priority

