Environmental Evaluation

John M. Boyce, MD President, J.M. Boyce Consulting, LLC

Disclosures: JMB is a consultant to 3M Healthcare, Clorox Company, GOJO Industries, and Bioquell, and has received research support from Diversey Care

Role of Contaminated Environment in Transmission of Healthcare-Associated Infections

- There is increasing evidence that contaminated environmental surfaces can contribute to the transmission of healthcareassociated pathogens
- Factors that support the role of the environment include:
 - Frequent contamination of surfaces by pathogens
 - Ability of pathogens to survive on surfaces and remain pathogenic
 - Transmission of pathogens from surfaces to hands of healthcare workers (HCWs) or directly to patients
 - Prior-room occupancy as a risk for acquisition
 - Improved cleaning/disinfection of surfaces can reduce transmission

Weber DJ et al. AJIC 2010;38:S25 Otter JA et al. Infect Control Hosp Epidemiol 2011;32:687 Weber DJ et al. Curr Opin Infect Dis 2013;26:338 Mitchell BG et al. J Hosp Infect 2015;91:211 Hayden MK et al. Clin Infect Dis 2006;42:1552

Environmental Contamination by Vancomycin-Resistant Enterococci (VRE)

- Vancomycin-resistant enterococci (VRE) are antibiotic-resistant bacteria that occur in the gastrointestinal tract of some patients
- VRE are also frequently present on the skin of patients who have VRE
- Patient with VRE shed the bacteria onto surfaces near them
- 7% to 46% of environmental surfaces in the rooms of patients who have VRE are contaminated with VRE

Boyce JM et al. J Clin Microbiol 1994;32:1148 Bonten MJM et al. Lancet 1996;348:1615 Weber DJ et al. Infect Control Hosp Epidemiol 1997;18:306 Sethi AK et a. Infect Control Hosp Epidemiol 2009;30:13

VRE Cultured from a Bedside Rail

Frequency of MRSA Environmental Contamination in Hospital Settings

- Percent of surfaces contaminated varies:
 - 1% 27% in MRSA patient rooms on regular wards
- Frequency of contamination varies among patients with colonization/infection at different body sites
 - 36% if MRSA in wound or urine vs 6% at other body sites
 - 59% with MRSA gastrointestinal colonization + diarrhea vs 23% if at other body sites, but not in stool
 - 19% of surfaces in an outpatient clinic were contaminated with community-acquired MRSA

Boyce JM et al. Infect Control Hosp Epidemiol 1997;18:622 Boyce JM et al. Infect Control Hosp Epidemiol 2007;28:1142 Johnston C et al. Infect Control Hosp Epidemiol 2006;27:1133 Chang S et al. Clin Infect Dis 2009;48:1423

Frequency of *Clostridium difficile* Environmental Contamination

- Patients with colonization or diarrhea due to Clostridium difficile contaminate environmental surfaces in their vicinity
- Percent of environmental cultures positive varies
 - Rooms with no recent *C.difficile* patient: 2.6 8% (+)
 - Rooms of patients with *C.difficile* in their bowel, but do not have diarrhea: 7 – 29% (+)
 - Rooms of patients with *C.difficile* diarrhea: 20 90% (+)

Fekety R et al. Am J Med 1981;70:906 McFarland L et al. NEJM 1989;320:204 Struelens MJ et al. Am J Med 1991;91 (Suppl 3B):138S Samore MH et al. Am J Med 1996;100:32 Sethi AK et al. Infect Control Hosp Epidemiol 2010;31:21 Weber DJ et al. AJIC 2010;38:S25

Environmental Contamination by Gram-Negative Bacilli

- Multiple studies have shown that Acinetobacter spp. can survive on wet and dry surfaces and contribute to the spread of healthcare-associated infections (HAIs)
- Laboratory-based studies have given mixed results regarding survival of other Gram-negative pathogens on surfaces
- However, recent studies have documented widespread environmental contamination by carbapenem-resistant strains of *Klebsiella*

Maragakis LL et al. JAMA 2004;292:3006 Thom KA et al. AJIC 2011;39:711 Havill NL et al. Infect Control Hosp Epidemio 2014;351:445 Weber DJ et al. Infect Control Hosp Epidemiol 2015;36:590 Weterings V et al. Eur J Clin Microbiol Infect Dis 2015;34:1647 Lerner A et al. J Clin Microbiol 2013;51:177

Indications for Culturing the Environment

- Routine culturing of environmental surfaces, without input from infection preventionists, is <u>not</u> recommended
- Most frequently performed as part of quality assurance, monitoring of cleaning/disinfection practices, during assessment of hazardous situations
- Examples:
 - Biological monitoring of sterilization processes
 - Monthly cultures of water and dialysate in hemodialysis units
 - Evaluation of the adequacy of hospital housekeeping practices
 - As part of an epidemiological investigation of an outbreak
 - Some hospitals may culture duodenoscopes to assure disinfection

CDC Guidelines for Environmental Infection Control, 2003

Methods for Culturing the Environment

- Dozens of methods have been used by investigators for culturing the environment in hospital settings
- Relatively few standards for acceptable levels of microbial contamination exist in healthcare
 - Standards exist for hemodialysis water and dialysate
 - No widely accepted criteria for defining surfaces as clean in healthcare
 - Level of contamination needed to prevent transmission is not known
- Useful reviews of available methods are listed below

CDC Guidelines for Environmental Infection Control, 2003 Clinical Microbiology Procedures Handbook, eds:Garcia LS & Isenberg HD, ASM Press 2011 Moore G et al. J Appl Microbiol 2007;103:1090 Obee P et al. J Hosp Infect 2007;65:35 Dolan A et al. J Hosp Infect 2011;79:227 Galvin S et al. J Hosp Infect 2012;82:143 Claro T et al. AJIC 2015;43:1000

Major Methods for Culturing Environmental Surfaces

Method	Type of Objects Sampled	
Moistened swab	Irregular objects, instruments	
Moistened swab & rinse (broth enrichment)	Irregular objects, instruments	
Moistened wipe & rinse	Large, flat surfaces	
Moistened sponge & rinse	Large flat surfaces	
Direct immersion	Immerse small objects in broth Fluids, water, instruments	
RODAC plates	Flat surfaces	

RODAC: Replicate organism direct agar contact (or replicate organism detection and counting)

CDC Guidelines for Environmental Infection Control, 2003 Clinical Microbiology Procedures Handbook, eds: Garcia LS & Isenberg HD, ASM Press 2011

Moistened Swab with Direct Plating

- Use moistened swab to sample surfaces
 - If defined area not sampled; results are at best semi-quantitative
 - If a defined area is sampled using a template, results are quantitative (CFUs/cm²); preferable
- Moistening (wetting) agents include normal saline, broth media (most common), or broth containing disinfectant neutralizer(s)
- Swab is used to directly inoculate non-selective or selective media, followed by incubation x 48 hrs
- Useful for sampling irregularly shaped objects, medical equipment, hard to reach areas; HCP hands

Lemmen SW et al. Int J Hyg Environ Health 2001;203:245 Duckro AN et al. Arch Intern Med 2005;165:302 Donskey CJ et al. N Engl J Med 2009;360:e3

VRE on Bedside Rail

Hand imprint culture

Moistened Swab with Direct Plating

Advantages:

- Easy to perform
- Simple; can be used in many facilities with microbiology laboratory support, including those with limited resources
- Can provide information about general level of contamination, or to look for specific pathogens
- Can inoculate selective agar

• Disadvantages:

- Least sensitive method for detecting organisms on surfaces
- Non-standardized procedure makes comparison of studies difficult
- Many factors can affect results

Moistened Swab & Rinse Method (Broth Enrichment)

- Use moistened swab to sample surfaces
 - Swabbing defined area using template is preferred
- Swab is placed in broth (e.g., TSB or BHI), agitated, and incubated x 24 hrs; broth is plated onto non-selective or selective media, incubated x 48 hrs
 - Selective broth for *C. difficile* that does not require incubation in anaerobic conditions has been developed (Cadnum JL et al.)
- Can be used to sample irregularly shaped objects, medical equipment, hard to reach areas, HCP hands/gloves

Boyce JM et al. ICHE 1997;18:622 Mayer RA et al. Am J Infect Control 2003;31:221 Hayden MK et al. Clin Infect Dis 2006;42:1552 Morgan DJ et al. Crit Care Med 2012;40:1045 Cadnum JL et al. J Clin Microbiol 2014;52:3259

Moistened Swab & Rinse Method (Broth Enrichment)

- Advantages:
 - Simple, can be used in many facilities with laboratory support
 - Not expensive, but requires both broth and solid media
 - More sensitive than direct plating of swabs
 - More sensitive than RODAC plates for detecting Gram-negative rods in some studies (Lemmen), but not others (Lerner)

• Disadvantages:

- Requires more laboratory processing & tech time than direct plating of swabs
- Results available 24 hr later than with direct plating
- Provides qualitative results unless broth inoculated onto agar immediately

Obee P et al. J Hosp Infect 2007;65:35 Lemmen SW et al. Int J Hyg Environ Health 2001;203:245 Lerner A et al. J Clin Microbiol 2013;51:177

Factors Affecting Results of Swab-Based Cultures

- Type of swab used
 - Cotton, rayon, dacron, flocked nylon
 - Flocked nylon picks up more than others
- Wetting solution (presence of Tween 80 may increase yield)
- Is swab twirled during sampling?
- Swabbing pattern (swab at 90^o angles)
- Surface area sampled

Moore G et al. J Appl Microbiol 2007;103:1090 Probst A et al. Appl Environ Microbiol 2010;76:5148 Hedin G et al. J Hosp Infect 2010;75:112

Cotton Swab

Nylon-flocked swab

Wipe-Rinse Method

- Useful for culturing large, flat, nonabsorbent surfaces
- Small (e.g., 2 cm x 2 cm) pre-moistened gauze pads or wipes are used to sample surface. Wipes are placed in broth (with or without vortexing) and incubated x 24-48 hrs, then subcultured to solid agar
- Wipes are most likely more sensitive than swab or RODAC cultures due to larger area sampled and use of broth enrichment.
 Can provide either qualitative or quantitative results
- Not used as frequently as swab, swab-rinse or RODAC methods

Al-Hamad A et al. J Hosp Infect 2008;70:328 Sethi AK et al. ICHE 2010;31:21 Attaway HH et al. Am J Infect Control 2012;40:907 Sitzlar B et al. ICHE 2013;34:459

Moistened Cellulose Sponge – Rinse Method

- Useful for culturing relatively large surface areas (overbed tables, toilet seats, large bedside rails, floors)
- Sterile tongs or gloves are used to handle sponges without stick handle
- Sponges are put in bag with buffer, homogenized in Stomacher; effluent fluid is centrifuged, suspended in buffer, and inoculated onto agar plates, which are incubated and examined for growth

Dubberke ER et al. AJIC 2007;35:315 Boyce JM et al. ICHE 2008;29:723 Rose LJ et al. Appl Environ Microbiol 2011;77:8355 Llata E et al. Diag Microbiol Infect Dis 2011;71:72

Moistened Cellulose Sponge – Rinse Method

- Advantages:
 - Can sample large areas with single sponge
 - Easier than RODAC plate for sampling irregular surfaces
 - More sensitive and yields higher colony counts than swabs due to greater surface area sampled
- Disadvantage:
 - Cost and availability of sponges
 - Significantly greater laboratory equipment and time required for processing

Boyce JM et al. ICHE 2008;29:723 Otter JA et al. Am J Infect Control 2009;37:517 Rose LJ et al. Appl Environ Microbiol 2011;77:8355

Direct Immersion in Broth

- Direct immersion of small items or small amounts of liquid into broth media can be useful in some circumstances
- Examples:
 - Immersion of potentially contaminated disposable medical supplies into bags of broth to look for contamination of the outer surface of supply packaging
 - Small quantities of disinfectants or other liquid specimens have been immersed in neutralizer broth to look for contamination
- Sensitive, but level of contamination cannot be determined

Otter JA et al. ICHE 2013;34:472 Gillespie JL et al. Urology 2007:69:912

RODAC Plates (Direct Agar Contact Method)

- Small petri plate filled with agar in order to provide convex surface
- Agar surface is pressed against a flat surface, plate is incubated
- Advantages:
 - Very easy to perform; more standardized approach than others
 - Results can be expressed as CFUs/cm² (quantitative result)
 - May be preferable for detecting Gram-positive bacteria (e.g., MRSA)
 - Neutralizer containing media (Dey-Engley) are available

• Disadvantages:

- Greater cost; limited media available; sample small area per plate

Obee P et al. J Hosp Infect 2007;65:35 Rutala WA et al. ICHE 2010;31:1025 Galvin S et al. J Hosp Infect 2012;82:143 Anderson DJ et al. ICHE 2013;34:466 Lerner A et al. J Clin Microbiol 2013;51:177

RODAC Plates

What Level of Contamination is Considered Acceptable "Clean"?

- Several authors have suggested that an aerobic colony count (ACC) <
 2.5 CFUs/cm2 is considered clean
 - Equivalent to < 65 CFU/plate
- Does this culture plate reflect a clean surface?
- Should 10 CFUs/plate be given consideration as a new breakpoint?
- Further studies correlating level of surface contamination with pathogen transmission are needed

Malik RE et al. AJIC 2003;31:181 Dancer SJ J Hosp Infect 2004;56:10 Boyce JM et al. ICHE 2011;32:1187

New Approaches to Environmental Cultures

- RODAC contact agar plates are useful for quantifying the level of contamination, but are expensive
- Recent studies have utilized a method used in food industry
- Thin bottom film with foam barrier, a round plating surface, and thin top film to cover the agar
- Different agars can be used, plates are less expensive, and have been used to culture hospital surfaces

Claro T et al. J Clin Microbiol 2014;52:3426 Claro T et al. Infect Control Hosp Epidemiol 2014;35:869 Claro T et al. AJIC 2015;43:1000

Membrane Filtration Cultures for Water or Other Liquid Samples

- Moderate to large volumes of water, liquid medications, or rinses from equipment channels should be cultured using membrane filtration methods
 - Especially important if low-level bacterial contamination is likely
- Fluids are put through sterile funnel with 0.22 μm or 0.45 μm filter using vacuum apparatus; filters are placed on agar plates and incubated x 48 hr

Weber DJ et al. Am J Infect Control 1999;27:59 Srinivasan A et al. N Engl J Med 2003;348:221 Blossom DB et al. Arch Intern Med 2009;169:1705 Palamore TN et al. ICHE 2009;30:764 Haupt TE et al. ICHE 2012;33:185 Sax H et al. Clin Infect Dis 2015;61:67

Membrane Filtration Cultures for Water or Other Liquid Samples

Water culture from wall fountain

Fluid culture from bronchoscope

Molecular Methods

- RT-PCR has been useful in detecting viruses (Norovirus, Rotavirus, SARS, MERS-CoV, Ebola) on surfaces
 - Less useful for bacterial contamination
- Advantages:
 - Rapid turnaround time
 - Can be very sensitive
- Disadvantages:
 - Does not differentiate between viable and non-viable organisms
 - Cost and need for advanced laboratory resources will limit use

Ganime AC et al. Am J Infect Control 2012;40:544 Tuladhar E et al. Appl Environ Microbiol 2012;78:7769 Galvin S et al. J Hosp Infect 2012;82:143 Youkee D et al. PLoS One 2015;10:e0145167 Bin SY et L. Clin Infect Dis 2016;62:755

Methods for Culturing Air

- Culturing air is often performed as part of an outbreak investigation, during construction or for research purposes
- Common methods include:
 - Use of agar "settle" plates (open lid)
 - Impaction on solid agar plates
 - Impingement of air in liquids
- Settle plates are easiest to use, and useful for culturing air for bacteria
 - Not recommended for fungal cultures
- With the exception of agar settle plates, special equipment and expertise are needed

Sherertz RJ et al. Ann Intern Med 1996;124:539 Boswell TC et al. J Hosp Infect 2006;63:47 Roberts K et al. BMC Infect Dis 2008;8:7 Sax H et al. Clin Infect Dis 2015;61:67

Settle plate

Hand-held Air sampler

Cyclone air sampler

Anderson sieve volumetric air sampler

Methods for Culturing Air

- Results of settle plates can be expressed as number of viable bacteria/area of agar exposed/time (CFU/area/time)
- Liquid impinger or solid impactor samplers can provide data on number of particles or number of microorganisms per volume of air sampled (particles or CFU/m³)
- Volumetric sieve samplers (e.g., Anderson sampler) can differentiate respirable particles (< 5 μm) from larger particles
- Caveats:
 - Currently no uniform air quality standards for healthcare facilities
 - Lack of standards linking fungal spore levels to infection rates
 - Results may be affected by number and activity of personnel, temperature, humidity, time of day or year, and equipment used

CDC Guidelines for Environmental Infection Control, 2003

Methods for Assessing Cleaning Practices

- Visual inspection of surfaces
 - Check lists sometimes used
- Observation of housekeeper technique
- Fluorescent marker system
- Aerobic colony counts
- ATP bioluminescence assays

Griffith CJ et al. J Hosp Infect 2000;45:19 Cooper RA et al. Am J Infect Control 2007;35:338 Dancer SJ J Hosp Infect 2009;73:378 Luick L et al. Am J Infect Control 2013;41:751

Visual Inspection of Surfaces

- Simple, can be conducted in any facility
- Usually performed by housekeeping managers
- Assess surfaces to detect visible dirt/stains
- Problem: Surfaces that appeared clean by visual inspection often failed to pass criteria for cleanliness when tested by objective measures: aerobic colony counts or ATP bioluminescence

Griffith CJ et al. J Hosp Infect 2000;45:19 Cooper RA et al. AJIC 2007;35:338 Luick L et al. AJIC 2013;41:751

Observation of Housekeeper Technique

- Covert or overt observation of housekeepers during routine cleaning/disinfection activities
 - Establish variations in amount of time spent cleaning or disinfecting high-touch objects
 - Determine number of disinfectant wipes used/room
 - Detect which surfaces are not wiped adequately
 - Establish if housekeepers are allowing disinfectant to remain on surfaces for appropriate contact time

Hayden MK et al. Clin Infect Dis 2006;42:1552 Boyce JM et al. Infect Control Hosp Epidemiol 2010;31:99 Guerrero D et al. Infect Control Hosp Epidemiol 2013;34:524

Aerobic Colony Counts Using RODAC Plates

- Can be useful in assessing adequacy of cleaning practices
 - Generally record aerobic colony counts, without identification
 - Agar (e.g., Dey-Engley) should contain neutrlizers
 - May be most informative when looking for specific pathogens, such as *C. difficile*, VRE, MRSA, or CPE Gram-negatives
 - Selective agar, if available, facilitates pathogen identification
- Has been used to determine the relative effectiveness of different surface disinfectants, if cultures are obtained both before and after cleaning was performed
- Currently, expense is a limiting factor for frequent use

Rutala WA et al. Infect Control Hosp Epidemiol 2010;31:1025 Boyce JM et al. Infect Control Hosp Epidemiol 2011;32:1187 Lerner A et al. J Clin Microbiol 2013;51:177

Post-Cleaning Cultures of Five Sites in Two Patient Rooms Cleaned with Different Disinfectants

Top Row - room cleaned with Disinfectant A

Bottom Row – room cleaned with Disinfectant B

Improving Cleaning Practices by Using Fluorescent Marker System

- 1404 objects were evaluated before the intervention
- 744 objects were evaluated after the intervention
- Proportion of objects cleaned
 - Before intervention: 47%
 - After interventions: 76 92%
- Technique improved in all 3 hospitals (p < 0.001)
- This method has been used to improve cleaning practices in several larger studies

Carling PC et al. Clin Infect Dis 2006;42:385 Carling PC et al. Infect Control Hosp Epidemiol 2008;29:1 Carling PC et al. Crit Care Med 2010;38:1054

Evaluating Cleaning Measures in an ICU Using Fluorescent Marker System

- Prospective study of the impact of cleaning interventions on environmental contamination by MRSA and VRE
- Intervention consisted of
 - Change from use of pour bottles to bucket immersion of cleaning cloths
 - Educational campaign for housekeepers
 - Feedback regarding adequacy of terminal room cleaning
- 15 surfaces in rooms were marked with a fluorescent dye, and
 6 surfaces in patient rooms were cultured for MRSA and VRE
- Results:
 - Removal of fluorescent dye occurred on
 - 44% of surfaces during baseline period
 - 71% of surfaces during intervention period
 - Cultures (+) for MRSA or VRE decreased from 45% at baseline to 27%

Goodman ER et al. Infect Control Hosp Epidemiol 2008;29:593

Monitoring Hospital Cleanliness Using ATP Bioluminescence Assays

- ATP bioluminescence assays have been used to monitor cleanliness of surfaces in hospitals
 - Daily cleaning or terminal cleaning
 - Assess variations in housekeeper performance

Griffith CL et al. J Hosp Infect 2000;45:19 Malik RE et al. AJIC 2003;31:181 Cooper RA et al. AJIC 2007;35:338 Lewis T et al. J Hosp Infect 2008;69:156 Boyce JM et al. Infect Control Hosp Epidemiol 2009;30:678 Boyce JM et al. Infect Control Hosp Epidemiol 2010;31:99 Moore G et al. AJIC 2010;38:617 Havill NL et al. AJIC 2011;39:602 Anderson RE et al. J Hosp Infect 2011;78:178

ATP Bioluminescence Method

Step 1

Use special swab to sample surface

Step 2

Place swab in reaction tube

Step 3

Place tube in luminometer Results: Relative Light Units

Assessing Terminal Cleaning Practices Using 3 Methods

- Prospective study to compare how many surfaces would be considered clean, based on
 - Aerobic colony counts obtained by agar contact plates
 - Fluorescent marker method
 - ATP bioluminescence assay system
- 5 high-touch surfaces were sampled in a convenience sample of 100 hospital rooms
- Adjacent surfaces on 5 high-touch surfaces were sampled before and after terminal cleaning

382 High-Touch Surfaces Classified as Not Clean Before Terminal Cleaning, Results for Fluorescent Marker and ATP

Boyce JM et al. ICHE 2011;32:1187

- Cultures of the environmental surfaces in hospitals should be coordinated by infection preventionists, as part of outbreak investigation or monitoring of cleaning/disinfection practices
- Using moistened swabs with direct plating of solid agar is easy to perform, yields useful semi-quantitative results, but is the least sensitive method for detecting microorganisms
- Moistened swabs & rinse (broth enrichment) method is more sensitive than direct plating
 - Will detect lower levels of bacterial contamination
 - Yields qualitative results due to incubation of broth before plating

- Wipe-rinse and sponge-rinse methods are useful for sampling larger areas, and are more sensitive than swab-based methods due to larger area sampled
 - Require more laboratory equipment and processing than swabs
- Culturing flat surfaces using RODAC plates is easy to perform, samples a defined area, and provides quantitative results
 - Currently the more standardized approach to quantifying levels of bacterial contamination of surfaces
 - Preferable to use neutralizer-containing (D/E) plates if residual disinfectant is likely to be on surfaces

- Moderate to large volumes of water or other liquid samples should be cultured using membrane filtration methods
 - Also true for smaller volumes when low-level bacterial contamination is suspected
- Culturing of air samples in healthcare is somewhat controversial given the lack of standards for indoor air quality in hospitals, and the special expertise and equipment required
 - Useful for investigation of suspected airborne transmission (especially of fungal disease), during construction, and perhaps monitoring air quality during surgical procedures (implant surgery)

- Monitoring the effectiveness of cleaning/disinfection practices in heathcare settings is recommended
- Useful approaches include:
 - Fluorescent marker methods
 - ATP bioluminescence assays
 - Aerobic colony counts or culture for specific pathogens
- Some facilities have found used a combination of these methods

Credits

Thanks to Nancy L Havill, MT who performed the environmental cultures reported by our group

Correlation Between Aerobic Colony Counts and ATP Bioluminescence Assays

Author	# Samples Taken	Statistical Method	Correlation
Poulis JA	378	Linear regression	R < 0.4
Aycicek H	280	Coeff of Kappa	K = 0.249, p <.001
Willis C	108	Correlation (?method)	R = 0.15
Boyce JM	100	Spearman correlation	R = 0.36-0.65, p <.001024
Boyce JM	1000	Mixed model ANCOVA	R = 0.03, p = .76
Shama G	Not stated	Coeff. of variation	R ² = 0.078
Sciortino CV	Not clear	Pearson correlation	R = - 0.036 - 0.218

Note: studies were conducted in different settings and with different ATP assays Poulis JA et al. Int J Food Microbiol 1993;20:109 Aycicek H et al. Int J Hyg Environ Health 2006;209:203 Willis C et al. Br J Infect Control 2007;8:17 Boyce JM et al. Infect Control Hosp Epidemiol 2009;30:678 Boyce JM et al. Infect Control Hosp Epidemiol 2011;32:1187 Shama G et al. Int J Hyg Environ Health 2013;216:115 Sciortino CV et al. AM J Infect Control 2012;40:e233