

Georgia Department of Public Health Environmental Health Section Public Swimming Pools, Spas and Recreational Waterparks Program

Public Swimming Pool Hydraulic Analysis Worksheet

Pool Name			Date					
Pool Address_								
Shape	Perimeter ft		Wid	th				
Length	Min. Depth		Brea	ık	_ N	lax		
Slope $= 1$ ft. in	ft. Area =	Sq. ft	Dep . Volum	tn 1e =	D gallo	epth ons		
Gunite Outdoor, Indo	Poured O	Other		Pipe Mat'	1			
Design Flow R	ate = <u>Pool Volume</u> Turnover time *1	() Gal.) Min	.=	gpm		
Check minimu	m skimmer flow rate. If t or rule (25 gpm) then desig	urnover ra	ate is inac	lequate for	minimum	skimmer ope		te.
I. <u>Nu</u>	mber of Skimmers Requir	ed:						
	Quantity = no. of skim	mers requ	ired fron	n Swimming	g Pool Ru	iles.		
	Surface Area of Pool _ No. of skimmers provi	ded	_ sq. ft.	No. of	skimmers	required		
II. <u>Sk</u>	immer Flow Rate:							
	A.) Skimmer flow rate	= 100% c	of Design	flow rate =	:	gpm.		
	B.) <u>Flow through each</u> for each skimmer	Skimmer	<u> </u>	ter flow rate	e (above <u>)</u>		$h) = \ g_{mers provided}$	
	C.) Select equalizer linc. the # of skimmers.	e cover(s)) with a f	low in gpm	equal to	the maximum	pump flow div	ided by
III. <u>N</u>	lumber of Inlets Required	<u>.</u>						
	No. of inlets = $\frac{\text{perim}}{20}$	<u>eter</u> = (20') =)		(Use next whole number)	
	or pool use minimum 6 hr. ss. For special purpose po						er depth, which	ever is

*2 Must be 25 - 55 gpm or based on manufacturer specifications.

Georgia Department of Public Health Environmental Health Section Public Swimming Pools, Spas and Recreational Waterparks Program

IV. Pipe Size Selection

A. Skimmer Line Size:

Select pipe size which gives max. 6' fps velocity at skimmer flow rate.

	Branch 1	Branch 2	Branch 3	Branch 4	
Served by Pipe					
Pipe Size					
Flow in Pipe					
Velocity (fps)	abart used for velo				
(mulcale which	chart used for velo	City numbers)			

B. Return Line Size:

Select pipe size and branches, which gives max. 8 fps velocity at design flow rate.

No. inlets	Branch 1	Branch 2	Branch 3	Branch 4		
served by pip	pe					
Pipe Size						
Flow in pipe						
Velocity (fps) (Indicate which chart used for velocity numbers)						

V. Main Drain Pipe and (Suction) Outlet Covers Selection

A. Main Drain Size:

Select pipe size which gives max. 6 fps velocity at highest flow rate on the pump curve.

Pipe size _____ ¹Max. Pump Flowrate _____ Velocity (fps) _____

B. Pipe Cover1.2Max.Pump# of CoversFlowrate/Cover*(Capacity)Size Size (each)flow (gpm)(Q=Max. flow/N-1)(All Covers)

Frame & Grate Cat. No. _____ Quant.____

1. Use the pump's maximum flow rate from the pump curve to obtain flowrate/cover.

2. If therapy flow is through these covers, this flow must also be figured into all calculations. *Covers meet APSP-16

Georgia Department of Public Health Environmental Health Section Public Swimming Pools, Spas and Recreational Waterparks Program

CALCULATE RETURN LINE LOSS:*

STATE WHICH CHART, GRAPH	H, NOMIGRAPH, ETC. USED	
		BOTTOM OF COLUMN
1 Straight pipe size	=	@ gpm
# Elbows x Equity Longth	—	gpm
	=	
# Volves v Equiv. Length		
# Valves x Equiv. Length	I=	
Friction loss per 100'	x total equiv. length	$\pm 100 = $ ft.
(for above pipe size)		
2. Straight pipe size	=	@gpm
# Elbows x Equiv Length	=	
#Tees x Equiv Length	== == x total equiv. length	
# Valves x Equiv. Length	۱=	
Friction loss per 100'	x total equiv. length	$__\ \div 100 = __\ ft.$
(for above pipe size)		
3. Straight pipe size	=	@ gpm
	=	
$# \underline{\qquad} Equiv. Length$	=	
# Values x Equiv. Length	= =	
# Valves x Equiv. Lengui	x total equiv. length	· 100 - ft
(for above pipe size)	x total equiv. lengui	
(ioi above pipe size)		
4. Straight pipe size	=	gpm
# Elbows x Equiv. Length	=	
#Tees x Equiv. Length	== = x total equiv. length	
# Valves x Equiv. Length	۱=	
Friction loss per 100'	x total equiv. length	$\pm 100 = $ ft.
(for above pipe size)		
5 Straight nine size	=	@ opm
	=	
# Valves v Equiv. Length		
Friction loss per 100'	x total equiv. length	ft
(for above pipe size)		$\underline{\qquad}$ $\div 100 = \underline{\qquad}$ It.
(ior above pipe size)		
6. Straight pipe size	=	@gpm
#Elbows x Equiv. Length	=	
#Tees x Equiv. Length	=	
# Valves x Equiv. Length	ı =	
Friction loss per 100'	x total equiv. length	$\div 100 = $ ft.
(for above pipe size)		
		<u>~</u>
	e at gpm =	
(from manufacturer)	Total Return Line friction loss	
	(add all totals)	*(Enter on page 6)

Georgia Department of Public Health Environmental Health Section

Public Swimming Pools, Spas and Recreational Waterparks Program

CALCULATE SKIMMER LINE LOSS: * STATE WHICH CHART, GRAPH, NOMIGRAPH, ETC. USED ____ ADD _____ AT

		borre	om of colonin
	Straight pipe size	=	@gpm
#	Elbows x Equiv. Length		
#	Tees x Equiv. Length	=	
#	Valves x Equiv. Length	=	
Fri	iction loss per 100'	x total equiv. length	
		=	
# _	Elbows x Equiv. Length	=	
#_	Tees x Equiv. Length	=	
#	Valves x Equiv. Length	=	
Fri	iction loss per 100'	x total equiv. length	$\pm 100 = $ ft.
	or above pipe size)		
	Straight pipe size	=	@gpm
#	Elbows x Equiv. Length		
#	Tees x Equiv. Length	=	
	Valves x Equiv. Length		
Fri	iction loss per 100'	x total equiv. length	$\div 100 =ft.$
	or above pipe size)		
	Straight pipe size	=	@ gpm
#	Elbows x Equiv. Length	=	
#	Tees x Equiv. Length		
#	Valves x Equiv. Length		
Fri	iction loss per 100'	x total equiv. length	$\div 100 = $ ft.
	or above pipe size)	1 0	
	Straight pipe size	=	@ gpm
#	Elbows x Equiv. Length		
	Tees x Equiv. Length		
	Valves x Equiv. Length		
	iction loss per 100'		
	or above pipe size)	I <u> </u>	
	Straight pipe size	=	@ gpm
#	Elbows x Equiv. Length	=	
#	Tees x Equiv. Length	=	
#	Valves x Equiv. Length	=	
Fri	iction loss per 100'	x total equiv. length	$\div 100 = $ ft.
	or above pipe size)		
Fri	iction loss over the weir at	gpm =	ft.
	om manufacturer)		
		e friction loss =	
	(add all	totals) *(I	Enter on page 6)

Georgia Department of Public Health Environmental Health Section

Public Swimming Pools, Spas and Recreational Waterparks Program Total Dynamic Head Required:

Return Line Loss (from page 4)	=		ft.			
Filter Loss When Dirty *(see below)	=		ft.			
Skimmer Line Loss (from page 5)	=		ft.			
Heater Loss (from manufacturer)	=		ft.			
Other (Multiport valves, e (from manufacturer)	tc.) =		ft.			
Total Loss			ft.			
Pump Selection: (Submit Curve)						
Make	Model		,	_gpm @	TD	Н
Filter Selection:	Backwash rate		gpm @ _		TDH**	
Filter area required = $($ Design flow (Flow Rate p	rate) = (per sq. ft.) (<u>)</u> =			_
(Cartridge =	5 gpm per sq. ft 2 gpm per sq. ft = .3 gpm per sq. ft s vacuum pre-coal	less than 15 : t.) (Vacuum p	inch bed depth) (re-coat = 2 gpm	per sq. ft.)		
Cat. No	Model					
Filter Area	_sq. ft. No. Tanks	S	Si	ze		
Pump Specifications	_HP	Cycle	Phas	e	Volt	_RPM
Pool Design Professional			GA. License	#		
Pool Contractor						
Approved & Checked By (Health Dept.)				Date _		
* Cartridge Filter = 23.1 ft. Sand 1	Filter = 34.7 ft. F	Pressure pre-co	pat = 57.8 ft. V	acuum pre-	coat = 4.3 ft	•

** Backwash TDH = TDH - Return Piping and Fixtures + Backwash Line Loss