2011 Georgia Office of EMS Updates

Medicine for the Paramedic:

- Thrombolytics
- Stroke and Stroke Centers
- Infectious Diseases
- Excited Delirium
- Blood Transfusion Reactions
- Bariatrics

Special Thanks

- **Richard Kalasky**
 - Jones and Bartlett Publishing
- **Alana Sulka**
 - Director of Epidemiology, East Metro Health District
- **Farrah Machida, MSPH**
 - District Epidemiologist, East Metro Health District
THROMBOLYTICS

Should Paramedics Give Thrombolytics??

- Multiple studies have shown that paramedics can ‘diagnose’ myocardial infarctions with 12-lead ECGs.
- Multiple studies have shown that pre-hospital thrombolysis significantly reduces the time it takes to get thrombolysis and the mortality of the patients (mortality for thrombolysis can go up the longer you wait).
STREAM - Strategic Reperfusion (With Tenecteplase and Antithrombotic Treatment) Early After Myocardial Infarction

- Arm 1 (experimental):
 - Early tenecteplase, clopidogrel and enoxaparin followed by routine or rescue coronary intervention
- Arm 2:
 - Standard primary PCI
- Study Start Date: March 2008
- Estimated Primary Completion Date: April 2012

Pre-hospital Administration of Thrombolytic Therapy With Urgent Culprit Artery Revascularization (PATCAR)

- Arm 1 (experimental):
 - Drug: Retavase 10 U IV Bolus
 - Procedure: Angioplasty/Heart Catheterization
 - Device: Drug eluting stent placed in heart attack related artery
- Arm 2:
 - Procedure: Angioplasty/Heart Catheterization
 - Device: Drug eluting stent placed in heart attack related artery
- Study Start Date: November 2003
- Estimated Primary Completion Date: December 2011
Acute Coronary Syndromes

Symptoms suggestive of ischemia or infarction

EMS assessment and care and hospital preparation:
- Monitor, support ABCs. Be prepared to provide CPR and defibrillation
- Administer aspirin and consider oxygen, nitroglycerin, and morphine if needed
- Obtain 12-lead ECG; if ST elevation:
 - Notify receiving hospital with transmission or interpretation; note time of onset and first medical contact
- Notified hospital should mobilize hospital resources to respond to STEMI
- If considering prehospital fibrinolysis, use fibrinolytic checklist

Prehospital Fibrinolytic Checklist

Step 1: Has patient experienced chest discomfort for greater than 15 minutes and less than 12 hours?

Yes ☑ No ☐

Step 2: Does ECG show STEMI or new or presumably new LBBB?

Yes ☑ No ☐

Step 3: Are there contraindications to fibrinolysis?

If ANY one of the following is checked YES, fibrinolysis MAY be contraindicated.

- Systolic BP >180 to 200 mm Hg or diastolic BP >100 to 110 mm Hg
- Right vs left arm systolic BP difference >15 mm Hg
- History of structural central nervous system disease
- Significant closed head/facial trauma within the previous 3 weeks
- Stroke >3 hours or <3 months
- Recent (within 2-4 weeks) major trauma, surgery (including laser eye surgery), GI/GU bleed
- Any history of intracranial hemorrhage
- Bleeding, clotting problem, or blood thinners
- Pregnant female
- Serious systemic disease (eg, advanced cancer, severe liver or kidney disease)

Step 4: Is patient at high risk?

If ANY one of the following is checked YES, consider transfer to PCI facility.

- Heart rate ≤100 mm AND systolic BP ≤100 mm Hg
- Pulmonary edema (rales)
- Signs of shock (cool, clammy)
- Contraindications to fibrinolytic therapy
- Required CPR

1Consider transport to primary PCI facility as destination hospital.
Which ones to give?

• Alteplase (Activase)
• Reteplase (Retavase)
• Tenecteplase (TNKase)
• Anistreplase (Eminase)
• Streptokinase (Kabikinase, Streptase)
• Urokinase (Abbokinase)
• Anisoylated Purified Streptokinase Activator Complex (APSAC)

Dosages?

• Vary widely
• Some have very stringent time frames
• Consult the manufacturer’s guidelines for the Thrombolytic you are using
The Importance of Medical Direction

- Medical Direction is who ultimately decides the dosing regimen
- Proper On-Line Medical Direction is paramount
 - Serious harm (death from GI Bleed, Head Bleed, etc) can result from improper patient selection
The 7 D’s of Stroke Care

- Detection: Rapid recognition of stroke symptoms
- Dispatch: Early activation and dispatch of emergency medical services (EMS) system by calling 911
- Delivery: Rapid EMS identification, management, and transport
- Door: Appropriate triage to stroke center
- Data: Rapid triage, evaluation, and management within the emergency department (ED)
- Decision: Stroke expertise and therapy selection
- Drug: Fibrinolytic therapy, intra-arterial strategies
- Disposition: Rapid admission to stroke unit, critical-care unit

Part 11: Adult Stroke: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

1. Identify signs and symptoms of possible stroke
2. Activate Emergency Response

Critical EMS assessments and actions
- Support ABCs; give oxygen if needed
- Perform prehospital stroke assessment (Table 1)
- Establish time of symptom onset (last normal)
- Triage to stroke center
- Alert hospital
- Check glucose if possible
Cincinnati Prehospital Stroke Scale

- Facial droop (have patient show teeth or smile)
 - Normal—both sides of face move equally
 - Abnormal—one side of face does not move as well as the other side
- Arm drift (patient closes eyes and holds both arms straight out for 10 seconds)
 - Normal—both arms move the same or both arms do not move at all (other findings, such as pronator drift, may be helpful)
 - Abnormal—one arm does not move or one arm drifts down compared with the other
- Speech (have the patient say “you can’t teach an old dog new tricks”)
 - Normal—patient uses correct words with no slurring
 - Abnormal—patient slurs words, uses the wrong words, or is unable to speak

Los Angeles Prehospital Stroke Screen

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Yes</th>
<th>Unknown</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Age > 45 y</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. History of seizures or epilepsy absent</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Symptoms < 24 h</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. At baseline, patient is not wheelchair bound or bedridden</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Blood glucose between 60 and 400 mg/dL</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Obvious asymmetry (right vs left) in any of the following three exam categories (must be unilateral):</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial smile/grimace</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm strength</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equal</th>
<th>Right Weak</th>
<th>Left Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Droop</td>
<td>Weak grip</td>
<td>Weak grip</td>
</tr>
<tr>
<td>No grip</td>
<td>No grip</td>
<td>No grip</td>
</tr>
<tr>
<td>Drifts down</td>
<td>Drifts down</td>
<td>Drifts down</td>
</tr>
<tr>
<td>Falls rapidly</td>
<td>Falls rapidly</td>
<td>Falls rapidly</td>
</tr>
</tbody>
</table>

Interpretation: If criteria 1 through 6 are marked yes, the probability of a stroke is 97%.
Stroke Centers

- “Specialty Care Center” means a licensed hospital dedicated to a specific sub-specialty care including, but not limited to, trauma, stroke, pediatric, burn and cardiac care.
- New Rule Section for EMS in Georgia – “Stroke Centers”
 - Allows for designation of Primary Stroke Centers and Remote Treatment Stroke Centers
Classification of Microorganisms
Influenza (the “flu”)

- Causes acute respiratory illness that lasts 7–10 days
- Responsible for 36,000 deaths and 100,000 hospitalizations per year
- Can be transmitted between humans and animals

Influenza

- Influenza A is most common.
 - Virus mutates slightly so that immune system doesn’t recognize subsequent infections.
 - Broken into subtypes
- Influenza B – evolves slower than A
 - regional/epidemics every few years – no subtypes
- Influenza C - rare
- Variations are monitored by the World Health Organization (WHO) and Centers for Disease Control (CDC).

What is this H and N stuff?

• Influenza A Surface Proteins
 – H (hemagglutinin)
 • 16 subtypes (H1-H16)
 – N (neuraminidase)
 • 9 subtypes (N1-N9)
 – Common types: H1N1 and H3N2
 – “Swine Flu” in 2009 was a novel form of H1N1
 – Avian Influenza (“bird flu” (H5N1)) – rarely infects humans but there have been cases

http://www.cdc.gov/flu/about/viruses/types.htm

Influenza Landmarks in Humans in this Century

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Source</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918</td>
<td>Spanish flu (H1N1)</td>
<td>Possible emergence from swine or an avian host of a novel H1N1 virus</td>
<td>Pandemic with >20 million deaths globally</td>
</tr>
<tr>
<td>1957</td>
<td>Asian flu (H2N2)</td>
<td>Possible mixed infection of an animal with human H1N1 and avian H2N2 virus strains in Asia</td>
<td>Pandemic, H1N1 virus disappeared</td>
</tr>
<tr>
<td>1968</td>
<td>Hong Kong flu (H3N2)</td>
<td>High probability of mixed infection of an animal with human H1N1 and avian H3N2 virus strains in Asia</td>
<td>Pandemic, H2N2 virus disappeared</td>
</tr>
<tr>
<td>1977</td>
<td>Russian flu (H1N1)</td>
<td>Source unknown but virus is almost identical to human epidemic strains from 1950; reappearance detected at almost the same time in China and Siberia</td>
<td>Benign pandemic, primarily involving persons born after the 1950s; H1N1 virus has cocirculated with H3N2 virus in humans since 1977</td>
</tr>
</tbody>
</table>

Incidents With Limited Spread

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Source</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>Swine flu (H1N1)</td>
<td>United States/New Jersey; virus enzootic in US swine herds since at least 1930</td>
<td>Localized outbreak in military training camp, with one death</td>
</tr>
<tr>
<td>1986</td>
<td>Swine flu (H2N2)</td>
<td>The Netherlands; swine virus derived from avian source</td>
<td>One adult with severe pneumonia</td>
</tr>
<tr>
<td>1988</td>
<td>Swine flu (H3N2)</td>
<td>United States/Wisconsin; swine virus</td>
<td>Pregnant woman died after exposure to sick pig</td>
</tr>
<tr>
<td>1993</td>
<td>H5N1</td>
<td>The Netherlands; swine reassortant between old human H3N2 (1973/1975-like) and avian H5N1</td>
<td>Two children with mild disease; fathers suspected of transmitting the virus to the children after being infected by pigs</td>
</tr>
<tr>
<td>1995</td>
<td>H7N7</td>
<td>United Kingdom; duck virus</td>
<td>One adult with conjunctivitis</td>
</tr>
<tr>
<td>1997</td>
<td>Avian flu (H5N1)</td>
<td>Hong Kong; poultry virus</td>
<td>Since 2003, 421 cases worldwide with 257 deaths</td>
</tr>
<tr>
<td>2009</td>
<td>Novel H1N1</td>
<td>Mexico</td>
<td>As of publication, >45,000 cases and >600 deaths in the United States; >365,000 cases and >4,000 deaths worldwide</td>
</tr>
</tbody>
</table>

Emerging Infectious Diseases
(1 of 2)

• Vaccinations and antibiotics have reduced the number of infectious diseases, but they have also made us complacent.
• Emerging diseases have been aided by human ability to travel, overuse of antibiotics, and abuse of antimicrobials.

Emerging Infectious Diseases
(2 of 2)

• Infections are known to play a role in peptic ulcer disease, cervical cancer, and chronic liver disease.
• Problematic in persons with compromised immune systems
Post-antibiotic Era (1 of 4)

- Almost all pathogenic bacteria have shown resistance to antibiotics.
- Contributing factors
 - Misuse of antibiotics
 - Poor infection control
 - Importation or intrusion of already-resistant strains

Post-antibiotic Era (2 of 4)

- Misuse of antibiotics
 - Antibiotics used to treat viral infections destroy normal flora, allowing resistant strains to dominate.
 - 80 million antibiotics prescriptions written each year for viral upper respiratory infections, against which they are ineffective
Post-antibiotic Era (3 of 4)

• Misuse of antibiotics (continued)
 – Patients must be advised not to ask for prescriptions for viral infections.
 – Patients must be advised to take all of a prescription, even if feeling better.
 – Patients should never use leftover antibiotics.

Post-antibiotic Era (4 of 4)

• Poor infection control
 – Health care workers are a major source of cross-infection between critically ill patients.
 – CCTP must always use proper sanitation and hand washing techniques.
Examples of Resistant Bacteria
(1 of 5)

• Methicillin-resistant *S. aureus* (MRSA)
 – Colonizes a variety of tissues causing infections such as cellulitis, cutaneous abscesses, wound infections, osteomyelitis, septic arthritis, endocarditis, pneumonia and septicemia
 – Risk factors include dialysis, diabetes, use of injectable drugs, and a history of antibiotic use.

Examples of Resistant Bacteria
(2 of 5)

• Methicillin-resistant *S. aureus* (MRSA) (continued)
 – Transmitted by direct contact with infected patients
 – CCTP should avoid direct contact with anyone with a known MRSA infection.
CA-MRSA Necrotizing Pneumonia

CDC's "5 C's" of CA-MRSA Transmission

- Crowding
- Frequent Contact
- Contaminated Surfaces and Shared Items
- Compromised Skin
- Cleanliness
Manifestations of MRSA Infections

- Often mistaken for spider bites
- Only way to confirm is through a wound culture

Examples of Resistant Bacteria (3 of 5)

- Vancomycin-resistant *Enterocci*
 - Normally found in the intestinal tract
 - Antibiotic-resistant strains have become a major source of nosocomial infection in the United States.
 - Bacteria rarely cause illness in healthy persons.
 - Transmission by person-to-person contact
Examples of Resistant Bacteria
(4 of 5)

• Rickettsial diseases
 – Transmitted by tick bite
 – Blood transmission is possible.
 – Causes Rocky Mountain spotted fever, ehrlichiosis, and anaplasmosis
 – Can cause long-term health problems
 – Prevention by wearing insect repellent with DEET

Examples of Resistant Bacteria
(5 of 5)

<table>
<thead>
<tr>
<th>Anaplasma phagocytophilum (anaplasmosis)</th>
<th>Ehrlichia chaffeensis (ehrlichiosis)</th>
<th>Ehrlichia ewingii (infection)</th>
<th>Rickettsia rickettsii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>Fever</td>
<td>Fever</td>
<td>Fever</td>
</tr>
<tr>
<td>Headache</td>
<td>Headache</td>
<td>Headache</td>
<td>Headache</td>
</tr>
<tr>
<td>Malaise</td>
<td>Malaise</td>
<td>Malaise</td>
<td>Malaise</td>
</tr>
<tr>
<td>Muscle aches</td>
<td>Muscle aches</td>
<td>Muscle aches</td>
<td>Muscle aches</td>
</tr>
<tr>
<td>Vomiting</td>
<td>Vomiting</td>
<td>Vomiting</td>
<td>Vomiting</td>
</tr>
<tr>
<td>Nausea</td>
<td>Nausea</td>
<td>Nausea</td>
<td>Loss of appetite</td>
</tr>
</tbody>
</table>

| Rare rash | Rash in < 30% of adults and approximately 60% of children | Rare rash | Maculopapular rash approximately 2-4 d after onset of fever in 50% to 60% of adults (and > 90% of children) might involve the palms and soles |

Clostridium difficile cont.

- Acquired from the environment or by fecal-oral transmission from colonized people.
- Colonization rates in healthy neonates & infants as high as 50%
- Colonization less than 5% for those over 2 years

Reservoirs for C. diff

- Hospitals
- Nursing homes
- Child care facilities
Patients at an Increased Risk for *C. difficile*-Associated Disease?

The risk for disease increases in patients with:
- antibiotic exposure
- gastrointestinal surgery/manipulation
- long length of stay in healthcare settings
- a serious underlying illness
- immunocompromising conditions
- advanced age

C. Diff Transmission

- *C. difficile* is shed in feces.
 - Any surface, device, or material (e.g., commodes, bathing tubs, and electronic rectal thermometers) that becomes contaminated with feces may serve as a reservoir.
- *C. difficile* spores are transferred to patients mainly via the hands of healthcare personnel who have touched a contaminated surface or item.
- Rate: Acute care: 3-25/10,000 patient days
Prerequisites for CDI

- Antimicrobial Therapy
 - Disturbed colonic microflora
 - Acquisition of toxigenic *C. diff*
 - Toxin A & B production

- Advanced Age
- Underlying illness

Pathogenesis of *C. diff* Infection (CDI)

- Ingestion
- Germination
- Proliferation
- Toxin Production

CDI infection Prerequisites

• CDAD due to recent (re) acquisition of *C. diff*
 – Incubation period unknown
 – <7 days to several weeks
• Antimicrobial exposure may or may not precede acquisition

Symptoms of CDI

Symptoms include:
• watery diarrhea (at least three bowel movements per day for two or more days)
• fever
• loss of appetite
• nausea
• abdominal pain/tenderness
CDADs

- pseudomembranous colitis (PMC)
- toxic megacolon
- perforations of the colon
- sepsis
- death (rarely)

Treatment for CDAD

- In 23% of patients, CDAD will resolve within 2-3 days of discontinuing the antibiotic to which the patient was previously exposed.
- The infection can usually be treated with an appropriate course (about 10 days) of antibiotics including metronidazole or vancomycin (administered orally).
- After treatment, repeat *C. diff* testing is not recommended if the patients’ symptoms have resolved, as patients may remain colonized.
Prevention of C. diff in Healthcare Settings

- Judicious Antibiotic use
- Use Contact Precautions: for patients with known or suspected CDAD:
 - Private rooms
 - Cohort
- Perform Hand Hygiene using either an alcohol-based hand rub or soap and water.
 - Alcohol-based hand rubs may not be as effective against spore-forming bacteria.
- Use gloves when entering patients’ rooms and during patient care.
- Use gowns if soiling of clothes is likely.
- Dedicate equipment whenever possible.
- CONTINUE THESE PRECAUTIONS UNTIL DIARRHEA CEASES

Implement an Environmental Cleaning and Disinfection Strategy

- Ensure adequate cleaning and disinfection of environmental surfaces and reusable devices, especially items likely to be contaminated with feces and surfaces that are touched frequently.
- Use an Environmental Protection Agency (EPA)-registered hypochlorite-based disinfectant for environmental surface disinfection after cleaning in accordance with label instructions; generic sources of hypochlorite (e.g., household chlorine bleach) also may be appropriately diluted and used. (Note: alcohol-based disinfectants are not effective against C. diff and should not be used to disinfect environmental surfaces.)
- Follow the manufacturer’s instructions for disinfection of endoscopes and other devices
Resistance of Infectious Organisms to Disinfectants

<table>
<thead>
<tr>
<th>Resistance to Disinfection</th>
<th>Class of Organism</th>
<th>Organism Example</th>
<th>Class of Disinfectant</th>
<th>Example of Disinfectant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most resistance</td>
<td>Spore formers</td>
<td>Clostridium difficile</td>
<td>EPA-registered sporidial</td>
<td>Glutaraldehyde; household chlorine bleach (1:10 dilution)</td>
</tr>
<tr>
<td>High resistance</td>
<td>Mycobacteria</td>
<td>TB</td>
<td>EPA-registered tuberculocidal</td>
<td>Combinations of high-percentage hydrogen peroxide (not household hydrogen peroxide and peracetic acid; chlorine dioxide; various phenolics)</td>
</tr>
<tr>
<td>Medium resistance</td>
<td>Nonenveloped viruses</td>
<td>Norovirus, poliovirus, adenovirus, papilloma viruses</td>
<td>EPA-registered effective agent against norovirus</td>
<td>Household chlorine bleach; Quats; high-percentage hydrogen peroxide (not household hydrogen peroxide)</td>
</tr>
<tr>
<td></td>
<td>Cationic detergent (Quats)-resistant bacteria</td>
<td>Pseudomonas aeruginosa and Acinetobacter baumannii</td>
<td>EPA-registered fungicidal, EPA-registered anti-MRSA and anti-VRE</td>
<td>Household chlorine bleach; high-percentage hydrogen peroxide (not household hydrogen peroxide); note: do not use Quats (Pseudomonads are resistant to Quats)</td>
</tr>
<tr>
<td>Low resistance*</td>
<td>Fungi</td>
<td>Trichophyton and Aspergillus Staphylococcus aureus (including MRSA, VRSA, and VRE)</td>
<td>EPA-registered fungicidal, EPA-registered anti-MRSA and anti-VRE</td>
<td>Quats; high-percentage hydrogen peroxide (not household hydrogen peroxide); various phenolics</td>
</tr>
<tr>
<td>Least resistance*</td>
<td>Enveloped viruses</td>
<td>Influenza, hepatitis B, and HIV</td>
<td>EPA-registered anti-hepatitis B and anti-HIV</td>
<td>Most environmental cleaning agents, including bleach, Quats; phenolics</td>
</tr>
</tbody>
</table>

Abbreviations: EPA, Environmental Protection Agency; HIV, human immunodeficiency virus; MRSA, methicillin-resistant Staphylococcus aureus; Quats, quaternary ammonium compounds; TB, tuberculosis; VRE, vancomycin-resistant enterococcus; VRSA, vancomycin-resistant Staphylococcus aureus.

*Note that low resistance to disinfectant does not mean the organism is not dangerous. It simply means some organisms can be killed easier than other organisms. Assume all patients transported carry infectious pathogens and take necessary steps to decontaminate the equipment and vehicle prior to the next transport.

Don’t forget about...

- TB
- Perutssis
- Measles
- Vaccine Preventable Diseases
Tuberculosis

• Not just in the lungs!!
• How its spread…
• MDR TB
• XDR TB

Measles
Measles in Europe

Measles outbreaks in Europe

21 APRIL 2011 - As of 18 April 2011, 33 countries in Europe have reported more than 6,500 measles cases. Epidemiological investigations and genotyping have confirmed transmission of measles virus among several countries in the Region and to the Americas.

Belgium has reported 196 cases to date, compared to 40 cases in all of 2010. Bulgaria has reported 131 cases this year, compared to 24,000 cases in 2009–10. France reported 557 cases from January to March 2011, compared to 5,550 cases reported in all of 2010.

In Sweden, nearly 300 cases have been reported from Lemovik in the southeastern part of the country.

Spain has reported two ongoing measles outbreaks since October 2010, with more than 600 cases reported in Andalusia. In the first outbreak, the most affected areas are Seville and surrounding municipalities, where more than 350 measles cases have been reported since January 2011. Cases of measles are reported among healthcare workers as well. The second outbreak was reported in the province of Granada, where about 250 cases have been reported since October 2010.

Since the beginning of a measles outbreak in September 2010, the former "Very low risk of Measles" has reported 636 cases as of the first week of

Measles in the US

This is an official CDC HEALTH ADVISORY

High Number of Reported Measles Cases in the U.S. in 2011—Linked to Outbreaks Abroad

Summary and background

The United States is experiencing a high number of reported measles cases in 2011, many of which were acquired during international travel. From January 2 through June 17, 2011, 160 confirmed cases of measles were reported to CDC. This is the highest reported number since 1991. Total cases (170) cases associated with importations from measles-endemic countries in which large outbreaks are occurring. The reported cases involved unvaccinated or partially vaccinated individuals not residing in the United States, and people traveling to these importing countries. To date, 72 subtypes (or more linked cases) have occurred, accounting for 47% of the 170 cases. Of the total cases, 133 (79%) were unvaccinated or partially vaccinated, 102 (61%) were non-United States residents, and 61 (36%) did not have documented vaccination status. Of the 120 cases patients who were U.S. residents, 80 (67%) were unvaccinated or partially vaccinated, 82 (69%) had documented vaccination status, 11 (9%) had received 1 dose of measles vaccine, 15 (13%) had received 2 doses, and 8 (7%) had received 3 (circumcised) doses.
Measles: The Global Picture

- In pre-vaccine era, nearly universal childhood disease
 - 135 million cases, > 6 million deaths annually
- Safe and effective vaccine licensed in the U.S. in 1963
 - From mid-1970s through Expanded Program on Immunization
 - Two dose schedule introduced in 1989
- Global disease burden declined but death toll remained high
 - 1987: 1.9 million deaths
 - 2008: 164,000 deaths
- Remaining global mortality burden mostly in Africa and Asia
 - In 2008, 47 countries accounted for 95% of global mortality

Measles Cases Reported to CDC
Nationally, 2002-2009

![Confirmed Cases Chart](image.png)
Measles: The National Picture

• Measles was declared eliminated from the United States in 2000
• 156 cases in 2011 (as of June 17, 2011)
• 136 (87.2%) were imported or linked to importation
• Among the 139 U.S. residents:
 – 83% were unvaccinated or had undocumented vaccination status
 – 8% had received 1 dose of MMR
 – 8% had received 2 doses of MMR
• 12 outbreaks
• Though, immunization coverage rates for measles vaccine remain high, unvaccinated persons have a greater risk for measles
• Measles is consistently one of the first diseases to reappear when immunization coverage rates fall

Measles: Review of Clinical Features

• Highly contagious; transmission occurs through respiratory droplets
• Clinical features
 – Incubation 14 days (Range: 7-21 days)
 – Prodrome lasts 2-4 days
 • Stepwise increase in fever to 103°F or higher
 • Cough, coryza, conjunctivitis
 • Koplick spots
• Rash
 – lasts 5-6 days
 – Maculopapular, becomes confluent
 – Begins on face and head and progresses down
• Case-patients are infectious 4 days before to 4 days after rash onset
Measles: Rash Appearance on Face and Trunk/Body

Measles: Koplik’s Spots on Oral Mucosa
Suspect Measles

- Notify ER EARLY!!!
- Call Health Department
- Measles specimens should be collected as soon as possible for the best results:
 - Serum for IgM and IgG serology testing
 - Throat or nasopharyngeal swab for PCR and viral isolation
- The suspect measles case should be isolated immediately and airborne transmission precautions should be taken if at a healthcare facility.
- Obtain a detailed description and timeline of the clinical presentation from the physician and case-patient.
 - Please be sure to get a detailed description of the rash and its progression.
Excited Delirium

• A LIFE threatening medical emergency!
• What is it??
 – A brain disorder
 – Usually drug related (crack/cocaine/PCP/meth)
 – Characterized by:
 • Too much dopamine
 • Hyperthermia
 • Paranoid aggression

Excited Delirium

• S/S:
 – Dilated pupils
 – Profuse Sweating
 – High body temp
 – Shaking/Shivering
 – INTENSE paranoia/agitation
 – Disorientation/Delusions/Scattered Ideas
 – Irrational speech/Talking to invisible people
 – VIOLENT behavior
 – Run into traffic/Naked/Resists Violently after restraint
 – Unexpected physical restraint
 – Diminished sense of pain
What do we do?

- Verbal de-escalation is not going to work!
- Meds:
 - Benzodiazepines
 - Neuroleptics/Atypical antipsychotics
 - Haldol, Geodon
 - Ketamine
- **THICK** restraints…and get some help!
 - But, **NEVER**:
 - Hobble
 - Prone Restraint
 - Hog-tie
- Monitor patient, Treat at Needed (check for reversible causes)
 - Temp, ECG, Glucose, etc.

If you want to know more…

- Deaths In Custody Reporting Act
 - Just Google it…under the Bureau of Justice Statistics
- http://www.exciteddelirium.org
- Check out the Institute for Prevention of In-Custody Deaths
- Excellent article at:
 - http://www.emsworld.com/print/EMS-World/Excited-Delirium/1$9165
BLOOD TRANSFUSION REACTIONS

It is in the New Scope!

<table>
<thead>
<tr>
<th>Pharmacological Intervention Skills</th>
<th>Interpretive Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Advanced pharmacological skills: venipuncture/vascular access</td>
<td>PMOCC This is a letter through direct venipuncture or through an existing peripheral IV catheter.</td>
</tr>
<tr>
<td>2. Obtaining peripheral venous blood specimen</td>
<td>PMOCC This includes placement of an IV/lines into peripheral veins, but does not include placement of umbilical catheters.</td>
</tr>
<tr>
<td>3. Intravenous device insertion (includes removal as needed)</td>
<td>PMOCC This includes placement in both adult and pediatric patients. This also includes both manual and mechanically assisted devices as approved by the local EMS medical director.</td>
</tr>
<tr>
<td>4. Administration of medications/fluids</td>
<td>PMOCC This includes hypotonic, isotonic, and hypertonic solutions as approved by medical direction. This also includes combination solutions (i.e., D5W, IN, etc.).</td>
</tr>
<tr>
<td>a. Crystalloid IV solutions</td>
<td>PMOCC Hypotonic dextrose solutions may be given IV.</td>
</tr>
<tr>
<td>b. Administration of hypertonic dextrose solutions for hypoglycemia</td>
<td>PMOCC Glucose may be administered via IM, SC, IV, IO or intranasal routes as approved by the local EMS medical director.</td>
</tr>
<tr>
<td>c. Administration of glucagon for hypoglycemia</td>
<td>PMOCC Glucagon may be administered via IM, SC, IV, IO or intranasal routes as approved by the local EMS medical director.</td>
</tr>
<tr>
<td>d. Administration of insulinitroly for a patient experiencing chest pain of suspected cardiac origin</td>
<td>PMOCC</td>
</tr>
<tr>
<td>e. Parenteral administration of epinephrine for anaphylaxis</td>
<td>PMOCC</td>
</tr>
<tr>
<td>f. Inhaled (nebulized) medications to patients with difficulty breathing and/or wheezing</td>
<td>PMOCC Inhaled (nebulized) means atomization of the medication through an oxygen/or delivery device with a medication chamber, or through use of a metered-dose inhaler.</td>
</tr>
<tr>
<td>g. Administration of a narcotic antagonist to a patient suspected of narcotic overdose</td>
<td>PMOCC Administration may be via IM, SC, IV, IO, or intranasal routes as approved by the local EMS medical director.</td>
</tr>
<tr>
<td>h. Administration of nitrous oxide (50% nitrous oxide, 50% oxygen mixture)</td>
<td>PMOCC</td>
</tr>
<tr>
<td>i. Oxygen administration</td>
<td>PMOCC</td>
</tr>
<tr>
<td>j. Paralytic administration</td>
<td>PMOCC Administration of paralytics for the purposes of RSI (Rapid Sequence Induction/Intubation) is not permitted unless the EMS Agency has met RSI requirements promulgated by the OSHA, and has received approval for RSI use from the OSHA. Paramedics are allowed to use pento to maintain the paralyse of an already intubated patient, if approved by medical direction.</td>
</tr>
<tr>
<td>k. Administration of other physician approved medications</td>
<td>PMOCC Paramedics are allowed to give any medication via any enteral or parenteral route, as approved by medical director (see RS note above).</td>
</tr>
<tr>
<td>l. Maintain an infusion of blood or blood products</td>
<td>PMOCC</td>
</tr>
</tbody>
</table>
S/S

• Resp:
 – Tachypnea
 – Wheezing
 – Rales

• CV:
 – Brady/Tachcardia
 – SHOCK!
 – Hypotension

• Nervous System:
 – Sense of impending doom
 – Apprehension

• Renal:
 – Concentrated, dark urine
 – Flank pain

• Skin
 – Diaphoresis
 – Urticaria
 – Edema
 – Cyanosis
 – Purpura

• General:
 – Fever
 – Chills
 – Headache
 – Heat at infusion site

Main symptoms of Acute hemolytic reaction

- Systemic
 - Chills
 - Fever

- Vascular
 - Hypotension
 - Uncontrollable bleeding

- Transfused vein
 - Heat sensation

- Lumbar region
 - Pain

- Heart
 - Increased heart rate

- Chest
 - Constricting pain

- Urinary
 - Hemo-globinuria
 - Hyperbilirubinemia
TX

- STOP THE TRANSFUSION!
- Change the IV tubing!
- Infuse NS
- Diphenhydramine and Epi PRN
The problem...

- Obesity rate is increasing in the U.S.
 - More patients will be obese
 - More crew members required for obese patients
 - More/specialized equipment for obese patients
 - Stretchers
 - Ramps/winches
 - Ambulances
 - Wheelchairs

What do we do?

- Don’t ignore the issue…plan for it!
 - Protocols should address bariatric patients
- Request lift assistance! Don’t hurt your back!
- Agencies may have a special response unit
Articles

- http://www.jems.com/article/administration-leadership/bariatric-patients-pose-weight

THE END!