The Impact of Rapid Diagnostics on Antimicrobial Stewardship

Deanne Tabb PharmD, MT (ASCP) Infectious Disease Pharmacist Clinical Microbiologist

Objectives

- Review traditional microbiology identification methods
- Discuss the benefits of rapid diagnostic tests
- Describe diagnostic stewardship
- Provide specific examples of rapid tests

The Conundrum

- Healthcare expenditures exceed \$3 trillion
- Cost-containment is imperative
- Recent survey of 41 institutions
 - Administrators view cost as the most important ASP outcome
 - ID providers view appropriateness as the most important metric
- Conflict between healthcare efficiency and optimal patient outcomes
- Results in "silo" mentality
- Deprives bedside medicine of new critical technology

Suboptimal Antibiotic Use

- Occurs 30 -50 % of all prescriptions
- Related specifically to microbiology:
 - Inappropriate use or interpretation of microbiology
 - Lack of microbiology confirmed diagnosis
 - Failure to submit appropriate specimens for culture
 - Lab test errors
 - Misuse of microbiology resources
 - Overreliance on empiric coverage regardless of microbiology results

Conventional Identification Method for Staphylococcus aureus

1-5 days of incubation

GPCC

Sensitivity Panel

18-24 hours

24 hours

Time line: 48 – 72 hours from BC collection

J Clin Microbiol 2012;50(1):127-33

- Background
 - Single-Center, retrospective
 - Medical University of South Carolina
- Inclusion Criteria
 - ≥ 18 years of age
 - Positive blood culture between August 1 and October 31 of 2010, 2012, and 2014
- Exclusion Criteria
 - Expired or placed on hospice care prior to blood culture positivity
 - Those whose blood cultures were deemed to contain contaminants

Macvane, S. H., & Nolte, F. S. (2016). Benefits of Adding a Rapid PCR-Based Blood Culture Identifica tion Panel to an Established Antimicrobial Stewardship Program. Journal of Clinical Microbiology, 5 4(10), 2455-2463. doi:10.1128/jcm.00996-16

- Study Groups
 - Group 1: Conventional identification (control group)
 - Group 2: Conventional identification with ASP (AS group)
 - Group 3: Rapid identification with ASP (BCID group)
- Outcomes Evaluated
 - Primary: Time to effective therapy and initial antimicrobial use
 - Clinical Endpoints:
 - In-hospital mortality, 30-day all-cause readmission, microbiological clearance, hospital LOS following blood culture positivity, and overall patient-specific hospital costs

Results (N = 364 patients)

Median time to organism ID was shorter in the BCID group

✓ 17.2 hours vs. 57.4 hours (control) and 53.9 hours (AS)

• Shorter median time to effective therapy in BCID group

✓ 4.9 hours vs. 15 hours (control) and 13 hours (AS)

Antibiotic de-escalation occurred sooner in BCID group

✓ 48 hours vs. 63 hours (control) and 61 hours (AS)

- No significant differences in all-cause or infection-related LOS, in mortality, in 30-day readmission
- While the cost between the groups were not significant, the average hospital cost was ~ \$10,000 less in the BCID group
- The study found the benefit of BCID group was an improved time to optimal antibiotic therapy

Clinical Impact

CLINICAL PRACTICE INVITED ARTICLE
Ellie J. C. Goldstein, Section Editor

An Antimicrobial Stewardship Program's Impact with Rapid Polymerase Chain Reaction Methicillin-Resistant *Staphylococcus aureus/S. aureus* Blood Culture Test in Patients with *S. aureus* Bacteremia

Karri A. Bauer,¹ Jessica E. West,² Joan-Miquel Balada-Llasat,² Preeti Pancholi,² Kurt B. Stevenson,² and Debra A. Goff¹ Departments of 'Pharmacy and 'Pathology, The Ohio State University Medical Center, 'Division of Infectious Diseases, College of Medicine, The Ohio State University, Columbus, Ohio

Previous studies have identified that RDT results in

- Improved time to optimal antibiotics for MSSA
- Reduced antibiotic exposure for SCN contamination
- Reduced length of stay and call backs to ETC
- Reduced cost to the institution

	Control group	PNA FISH	P value
Total DDD of vancomycin/patient	6.78	4.9	NS
DDD of vancomycin/patient after GPCC result	4.8	2.55	0.06
Patients receiving no doses of vancomycin	3/34 (9%)	9/53 (17%)	0.06, NS
Patients receiving 1 or less doses of vancomycin	5/34 (15%)	23/53 (43%)	<0.005
Number of patients with LOS < 3 days after GPCC result	6/34 (18%)	20/53 (38%)	0.06, NS
Median LOS (days)	6	4	<0.05, CI 0.95-1.87

Table 2. PNA FISH assay effect on length of stay and defined daily

Ann pharmacother2012;46(11):1484-90 Clin Infect Dis 2010;51(9):1074-1080 J Antimicrob Chemother 2006;58:154-158

Rapid Molecular ID Diagnostic Techniques

- Nucleic acid-based diagnostics, monoplex and multiplex PCR
- Microarray panels
- Peptide nucleic acid fluorescent *in situ* hybridization
- Magnetic resonance-based testing
- Matrix-assisted laser desorption ionization-time of flight mass spectrometry
- Next generation sequencing

"Our technical capabilities are exceeding our ability to apply them effectively and economically to human problems"

John Bartlett 1974

Choosing an Initiative

MIDTOWN MEDICAL CENTER ANTIMICROBIAL STEWARDSHIP PRIORITIZATION RISK ASSESSMENT 2017

Asumption: Given the association between antimicrobial use and the selection of resistant pathogens, inappropriate antimicrobial use is often used as a surrogate marker for the avoidable impact on antimicrobial resistance.

-			SEVERITY = (MA)	GNITUDE - MITIGATION)	-			
Priorities	PROBABILITY	Do we have an appropriate program, policy, test or procedure?	Is the process effective, including good compliance?	Frequency or chance of non- compliance with p/p if in place	Regulatory Accrediatation Issue TJC, CMS, public reporting	RISK"	Ability to measure scope and impact	Target for the organization (C-Suite or departmental buy- in?)	Priority Rank
SCORE	0 = N/A 1 = Low 2 = Moderate 3 = High	1 = Yes 2 = Developing 3 = No	1 = Yes 2 = Somewhat 3 = No	1 = Low 2 = Medium 3 = High	1 = Internal response 2 = optional core element 3 = External reporting	Risk Score	1 = Good 2 = Fair 3 =Difficult	1=Yes 0= No	1= being highest importance 3 = lowest importance
Use of ABX when a virus is causing a lower respiratory infection (molecular filmarray respiratory panel)	2	3	3	1	2	11	1	1	1
Use of abx for treating contaminated blood cultures (Molecular great basin blood culture technology)	3	3	3	1	2	12	1	1	1
Use of abx for asymptomatic bacteruia (Opportunity to educate)	3	3	3	2	2	13	2	0	1
Initial empiric therapy with broad- spectrum abx without streamlining to narrow spectrum agents after organism has been identified (Manual Bug Report)	2	1	1	2	3	9	3	1	2
Inappropriate use of abx (use-restricted)	1	1	1	1	3	7	2	1	2
Decreasing ABX utilization rates (DOT/1000)	2	3	3	2	3	13	3	1	1
Patient/family appropriately educated on risks/benefits of antibiotic use	1	3	3	1	3	11	3	0	1
Inappropriate ABX use Metrics: similar spectrum, renal adjustment, 72-hour time out, ID appropriate (Informatics alerts)	3	3	3	1	3	13	3	1	1

Choosing an Initiative

EVENT	Mortality	Additional cost	Additional LOS
Contaminated blood cultures	not available	\$8,720	5.4 days ¹
C. diff	1.13 OR ³	\$6000 - \$8000 ^{2,3}	4.7 days ³
ADR	0.08- 0.12/100,000 ⁷	\$2262/ADR ^{4,5,6}	2 days ^e

*Scale = 1 low (affects \leq 33% of population # Risk Score Analysis: Low Risk \leq 6, Moderate Risk 7-9, High Risk \geq 10

MIDTOWN MEDICAL CENTER ANTIMICROBIAL STEWARDSHIP PRIORITIZATION RISK ASSESSMENT 2017

Asumption: Given the association between antimicrobial use and the selection of resistant pathogens, inappropriate antimicrobial use is often used as a surrogate marker for the avoidable impact on antimicrobial resistance.

			SEVERITY = (MA)	GNITUDE - MITIGATION)				
Priorities	PROBABILITY Likelihood this will occur*	Do we have an appropriate program, policy, test or procedure?	Is the process effective, including good compliance?	Frequency or chance of non- compliance with p/p if in place	Regulatory Accrediatation Issue TJC, CMS, public reporting	RISK*		Target for the organization (C-Suite or departmental buy- in?)	Priority Rank
SCORE	0 = N/A 1 = Low 2 = Moderate 3 = High	1 = Yes 2 = Developing 3 = No	1 = Yes 2 = Somewhat 3 = No	1 = Low 2 = Medium 3 = High	1 = Internal response 2 = optional core element 3 = External reporting	Risk Score	1 = Good 2 = Fair 3 =Difficult	1=Yes 0= No	1= being highest importance 3 = lowest importance
Use of ABX when a virus is causing a lower respiratory infection (molecular filmarray respiratory panel)	2	3	3	1	2	11	1	1	1
Use of abx for treating contaminated blood cultures (Molecular great basin blood culture technology)	3	3	3	1	2	12	1	1	1

BC Contamination (Study I)

Impact of Contamination (Study II)

- 4.5 month retrospective chart review (04/01/2013 08/15/2013)
- versa TREK blood culture recovery system
- Age > 18 years

240 pictured

Data Collection

- Patient unique identification
- Patient location
- Reason for Hospitalization
- Demographics
 - Age, Gender, Antibiotic allergies
- Culture and sensitivity
 - Time from admission to BC collection
 - Number and date of bottles collected
 - Number of bottles positive
 - BC collection site and time
 - Culture and Sensitivity report
 - Empiric/Targeted antibiotics
 - Repeat BC

- Risk factors
 - Intravascular devices
 - Prosthetic devices
 - IV drug use
 - Immunocompromised
- Outcomes
 - Number of CoNS blood stream infections verses contamination
 - Appropriate antibiotic selection
 - Duration of therapy
 - Length of hospital stay
 - Increased LOS for contaminated BC bottles
 - ID consultation

Duration of Therapy

Impact of Rapid BC Identification (Study III)

Patient Inclusion Criteria (N = 43)

- Immunocompetent, age > 18 years •
- No-risk factors for MRSA such recent • hospitalization, antibiotic exposure, prior MRSA infection or colonization
- No foreign devices in place •
- No additional ID indications • requiring empiric vancomycin

Testing

- Quick FISH GPCC BC (QF GPCC) is a ٠ peptide nucleic acid fluorescence in-situ hybridization
- N = 50 kit secured from company ٠
- Targets the 16S rRNA of Staph aureus • and CoNS directly from BC with a sensitivity and specificity 98%

Table 2: Patients who were excluded			
Reason for exclusion	Number of patients (n=34)		
Additional infectious disease indications requiring continuation of empiric vancomycin	20		
Immunocompromised host	3		
Foreign device in place	5		
Risk factor for MRSA	6		

Table 2. Definite who were avaluate

S. aureus

CONS

Almangour, Tabb and Alhifany. Canadian Journal of Infectious Diseases and Medical Microbiology, April 2017

Criteria for testing: Rapid diagnostic testing will be performed for positive blood cultures with gram positive cocci in clusters (GPCC) except in the following patients:

- Patients who have additional ID indications necessitating continuation of empiric vancomycin ٠
- Immunocompromised or foreign device in place (e.g., central line) where coagulase negative ٠ staphylococcus may be an opportunistic pathogen warranting continuation of vancomycin

2017

Tested Patients (N = 9)

Table	Table 1: Patients who met inclusion criteria					
Age	Gender	Empiric therapy	Isolated microorganism	Plan made	Time to optimal antibiotic therapy (hours) using culture based method	Expected time avoided (hours) to optimal antibiotic therapy using new technology
61	F	Vancomycin	MSSA	Vancomycin → Nafcillin	78	74
68	м	Vancomycin	CoNS 1/1	Vancomycin discontinued	44	42
32	F	Levofloxacin	CoNS 1/1	Discharged from ED and call back was avoided	n/a	24
78	F	Vancomycin	CoNS 1/2	Vancomycin discontinued	30	28
74	F	IV Doxycycline	CoNS 1/1	Patient evaluated, antibiotic discontinued and patient discharged	49	47
49	м	Vancomycin and piperacillin/tazobactam	CoNS 1/2	Discharged from ED and call back was avoided	n/a	24
80	F	Vancomycin and ceftriaxone	Micrococcus 1/2	Vancomycin discontinued	28	26
85	F	Vancomycin and piperacillin/tazobactam	CoNS 2/2	Vancomycin discontinued	22	20
29	м	Vancomycin	CoNS 1/2	Vancomycin discontinued	31	29

Projected soft cost avoidance for ROI

- MSSA \$21,397
- SCN/Micrococcus (8 x \$ 8,720) \$69,760

Ann pharmacother2012;46(11):1484-90, Clin Infect Dis 2010;51(9):1074-1080 J Antimicrob Chemother 2006;58:154-158 Canadian Journal of Infectious Diseases and Medical Microbiology, April 2017

Return on investment

- SCN contaminants (N = 41) for 3 months x 4 = 164 patients annually
- Assay cost \$66.81 x 164 = \$10,956 annually
- Vancomycin cost per day, \$24.30/day
- Average vancomycin DOT, 4 days (range 2-6)
- Vancomycin levels \$ 2.64/case x 164 = \$ 433 annually
- Therefore, treatment cost for 164 patients = \$24.30 x 4 days = \$15,940
 + \$433 = \$16,373 annually
- Projected annual <u>hard cost</u> avoidance \$ 16,373 \$ 10,956 = **\$ 5,417**

Goal of Diagnostic stewardship

Morency-Potvin et al.

Clinical

FIG 1 Workflow pathways for conventional microbiology and RDT. Implementation of RDT increases laboratory workflow complexity but can hasten the availability of results. Communication of results is a key factor. Blue arrows represent the conventional microbiology pathway, orange arrows represent the RDT pathway, and green arrows represent opportunities for the laboratory and antimicrobial stewardship teams to improve communication of results. AST, antimicrobial susceptibility testing.

Key Roles of Microbiology

Antimicrobial Stewardship	Description	Examples
Diagnosis	Make the right diagnosis	Guidance on quality specimens RDT of BC isolates Inform about advanced tests Educate on test performance
Debridement/drainage	Drain abscesses remove foreign material	Prioritize and trace samples
Drug	Right empiric therapy	Antibiograms, supplementary testing, cascade reporting, refer isolates, notification, surveillance
Dose	Right dose	Report select MIC's
Duration	Appropriate DOT	Develop protocols to use biomarker testing to set DOT (timely PCT)
De-escalation oted from: Clinical microbiology review January 7, volume 30; issue 1, 381 - 407	Time-out	Do not report skin contaminants Append clinical guidance to microbiology reports

Cost-Value Analysis

- Time to appropriate antimicrobial therapy is the single most important predictor of mortality
- Identifying the causative pathogen sooner

Outcomes:

Decrease overuse of antimicrobials, LOS, unnecessary admissions, morbidity and mortality

Overuse :

RDT add to healthcare cost

Underuse:

Suboptimal outcomes

Inappropriate use:

Low pretest probability false +

Actions:

Develop diagnostic algorithms, automatic reflex testing, quick turnaround, report to ASP team for intervention

Antibiotics January 2016

Provider Education

RDT method and technology used

Indications for testing in the institution

Available alternative testing

Advantages and limitations

Turnaround time

Presentation of report and guidance on interpretation

Rapid ASP intervention for optimal time to appropriate antibiotics

Clinical microbiology review January 2017, volume 30; issue 1, 381 - 407

Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

Tamar F. Barlam,^{1,a} Sara E. Cosgrove,^{2,a} Lilian M. Abbo,³ Conan MacDougall,⁴ Audrey N. Schuetz,⁵ Edward J. Septimus,⁶ Arjun Srinivasan,⁷ Timothy H. Dellit,⁸ Yngve T. Falck-Ytter,⁹ Neil O. Fishman,¹⁰ Cindy W. Hamilton,¹¹ Timothy C. Jenkins,¹² Pamela A. Lipsett,¹³ Preeti N. Malani,¹⁴ Larissa S. May,¹⁵ Gregory J. Moran,¹⁶ Melinda M. Neuhauser,¹⁷ Jason G. Newland,¹⁸ Christopher A. Ohl,¹⁹ Matthew H. Samore,²⁰ Susan K. Seo,²¹ and Kavita K. Trivedi²²

Cascade reporting

- Rapid viral testing to limit antibiotic prescribing
- RDT on positive blood cultures
- Rapid PCT for ICU patients to assist in setting DOT
- Nonculture based fungal markers in patients with hematologic malignancies

÷

Organism	Cascade (conditional reporting)
MDR Acinetobacter	 Report susceptibility from panel for tigecycline (excluding urinary and blood
If isolate resistant to \geq 3 classes of	isolates)
antibiotics including meropenem	 If imipenem MIC ≤ 4 mcg/mL, set up etest and report susceptibility
(see below)	 Set up etest for minocycline and colistin and report susceptibility
MDR Pseudomonas	Set up etest for ceftazidime/avibactam, ceftolozane/tazobactam, and colistin and
If isolate resistant to ≥ 3 classes of	report susceptibility
antibiotics including ceftazidime	
and meropenem (see below)	
CRE Enterobacteriaceae	Report susceptibility from panel for tigecycline (excluding urinary and blood
	isolates)
	 Set up etest for ceftazidime/avibactam, Meropenem/vaborbactam and
	colistin and report susceptibility
MRSA from blood cultures	If isolate has a vancomycin MIC ≥ 2 mcg/mL, set up confirmatory vancomycin
	etest. Only report sensitivity interpretation pending etest results
	E-Test results:
	 If vancomycin etest MIC < 2, report vancomycin etest result
	 If vancomycin etest MIC ≥ 2, report vancomycin e-test result and panel
	results for daptomycin and ceftaroline
VRE Enterococcus from sterile	If VRE enterococcus isolate is resistant to linezolid, report daptomycin MIC and
body sources resistant to linezolid	interpretation
(excluding lung samples)	
Fluconazole resistant Candida	Report caspofungin and voriconazole
from sterile body sources	
(including krusei)	
Revised: 12/13/2017 Note: sav	e all isolates requiring etest work up for further investigation if needed

Revised: 12/13/2017 Note: save all isolates requiring etest work up for further investigation if needed

Applicable for MDR Acinetobacter and MDR Pseudomonas: Classes of Antibiotics

- Aminoglycosides (tobramycin, gentamicin, amikacin)
- Fluoroquinolones (levofloxacin, ciprofloxacin)
- Anti-Pseudomonal Cephalosporins (ceftazidime, cefepime)
- Aztreonam
- Carbapenem (meropenem, doripenem, imipenem)
- β-lactam β-lactamase inhibitor (piperacillin/tazobactam)

Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

Tamar F. Barlam,^{1,a} Sara E. Cosgrove,^{2,a} Lilian M. Abbo,³ Conan MacDougall,⁴ Audrey N. Schuetz,⁵ Edward J. Septimus,⁶ Arjun Srinivasan,⁷ Timothy H. Dellit,⁸ Yngve T. Falck-Ytter,⁹ Neil O. Fishman,¹⁰ Cindy W. Hamilton,¹¹ Timothy C. Jenkins,¹² Pamela A. Lipsett,¹³ Preeti N. Malani,¹⁴ Larissa S. May,¹⁵ Gregory J. Moran,¹⁶ Melinda M. Neuhauser,¹⁷ Jason G. Newland,¹⁸ Christopher A. Ohl,¹⁹ Matthew H. Samore,²⁰ Susan K. Seo,²¹ and Kavita K. Trivedi²²

- Cascade reporting
- Rapid viral testing to limit antibiotic prescribing
- RDT on positive blood cultures
- Rapid PCT for ICU patients to assist in setting DOT
- Nonculture based fungal markers in patients with hematologic malignancies

Procalcitonin Kinetics

Fig. 1 Procalcitonin (*PCT*) concentrations (mean \pm standard deviation) in patients with PCT-guided antibiotic treatment (*filled circles*) and the control group (*empty circles*) did not show any difference

Procalcitonin changes at various time points in	patients with bacterial sepsis a	ccording to antibiotic therapy	
	First-line empirical an	tibiotic therapy	P value
	Appropriate	Inappropriate	
PCT at D1 (n = 180; 129 S, 51 NS) ^a	27.2 (62.7)	29.6 (96.7)	0.92
PCT at D2 (n = 163; 117 S, 46 NS) ^a	27.4 (45.1)	40.9 (74.3)	0.09
∆PCT D1-D2	+1.7 (35.0)	+5.2 (47.4)	0.20
PCT at D3 (n = 164; 117 S, 47 NS) ^a	24.4 (58.4)	34.4 (55.7)	0.12
∆PCT D2–D3	-3.9 (35.9)	+5.0 (29.7)	<0.01
PCT at D4 (n = 121; 80 S, 41 NS) ^a	17.3 (45.8)	32.4 (46.2)	0.03
∆PCT D1–D4	-9.1 (46.7)	-0.8 (102.5)	0.01
∆PCT D3-D4	-8.3 (21.5)	-8.4 (16.6)	0.97

Changes in procalcitonin (PCT) values at various time points in patients with bacterial sepsis according to the appropriateness of the first-line empirical antibiotic therapy. S, survivors; NS, nonsurvivors. △PCT D1–D2, procalcitonin decrease between day 2 and day 1 after the onset of sepsis, and so forth. aMissing data are due to insufficient serum sample or death of patients within the 1-day, 2-day or 3-day-period following the onset of sepsis. D1, day sepsis is diagnosed.

Charles PE, Tinel C, Barbar S, et al. Procalcitonin kinetics within the first days of sepsis: relationship with the appropriateness of antibiotic therapy and the outcome. *Critical Care*. 2009;13(2):R38. doi:10.1186/cc7751.

Hohn A, Schroeder S, Gehrt A, et al. Procalcitonin-guided algorithm to reduce length of antibiotic therapy in patients with severe sepsis and septic shock. *BMC Infectious Diseases*. 2013;13:158. doi:10.1186/1471-2334-13-158.

Evaluation of Procalcitonin Use

Purpose: To evaluate the current use of PCT in guiding antibiotic therapy decisionsMethods: An IRB approved, single site, retrospective chart review between December 2016 and May 2017

<u>Data collected</u>: age, order dates and times, lab results, ordering physician, time to results, action taken, indication, and days of therapy <u>Inclusion criteria</u>: all patients > 18 years old <u>Primary objective</u>: determine if procalcitonin is being used to guide ABX decisions <u>Definitions</u>:

- More than one PCT level ordered was a surrogate marker for classifying a prescriber as using a clinical pathway designed to set DOT
- 2. A single PCT level that returned negative for bacterial infection resulting in discontinuation of antibiotics or continued observation with no antibiotics was used to classify a prescriber as using a clinical pathway to rule out sepsis.

- More than one PCT level drawn 2.2% (3/136)
- Single PCT orders 97.8% (133/136)
- Turnaround time = 59 hours from order to result

PCT ordered < 24 hours after admission

- 90 % (84/93) started on empiric antibiotics
- N = 41, PCT level resulted in infection not likely
- Antibiotic therapy continued in 50 % (20/41)

Additional Rapid Test Examples

GeneXPERT

- Utilizes Multiplex PCR technology
- MRSA/SA BC
 - Provides accurate determination of Staph from gram-positive BC in 1 hour
 - Can be easily integrated into sepsis bundles
- MRSA/SA SSTI
 - Wound swab
 - Can detect in less than 1 hour
 - Identifies presumptive positive strain for correct classifications

C. Difficile Identification

- Glutamate Dehydrogenase (GDH) + Toxin Enzyme immunoassay (EIA) +/- PCR
- Discordant results are set up on PCR
- GeneXPERT C.diff
 - Results in 45 minutes
 - Eliminates need for additional repeat testing
 - 93.5% sensitive
 - 94% specific

C difficile 6-Month Test Results

(5/1/2016 - 10/31/2016)

Summary:

- Rate of positive C. diff: 19.5% (165/846)
- Rate of discordant GDH/EIA results: 57.6% (95/165)
- Rate of positive PCR from discordant samples: 69.5% (66/95)

If PCR was not available, we would have missed 66 cases - 40% (66/165)

Alere™ i Influenza A&B Package Insert

- Rapid, qualitative isothermal test differentiates A &B
 - Processing time < 15 minutes
- For use with nasal or nasopharyngeal specimens
 - Direct nasal swabs
 - Nasal/Nasopharyngeal swabs (eluted in viral transport media)
 - Sensitivities of Rapid EIA Flu tests range from 50-70%
 - Alere

	Sensitivity	Specificity
Influenza A	97.9% ^ь (95% СІ: 92.6%, 99.4%)	86.2% ª (95% CI: 82.8%, 89.0%)
Influenza B	92.5% ^d (95% CI: 84.6%, 96.5%)	96.5%° (95% CI: 94.5%, 97.8%)

Alere I Instrument

12:50 - 12:55	Microbiology update: Throat Culture Evaluation	 Background: Current IDSA guidelines recommend throat culture submission for all quick strep negative samples. Newer molecular technology with high sensitivity/specificity has been developed and was recently implemented at MMC. According to the company, this newer technology obviates the need for confirmatory throat cultures. Microbiology presented a 6 month post-implementation evaluation of the molecular rapid Group A test kit (Alere) versus reflex throat cultures. 710 throat samples with quick strep <u>negative</u> results were processed for culture. The following organisms were recovered: 11 Group A Streptococci 14 Group C Streptococci 15 Group G Streptococci 	 In total, it was noted that reflex cultures identified an additional 5% of patients with bacterial pharyngitis who may benefit from antibiotic therapy for infection resolution. Microbiology will investigate reimbursement for reflex throat cultures and report back to the AST committee.
---------------	---	---	--

FilmArray System and Panels

- Multiplex PCR
 - Uses PCR to amplify several different DNA sequences simultaneously
 - Consists of multiple primer sets with a single PCR mixture
- BioFire's Respiratory Panel
 - New Respiratory Panel (RP2)
 - Nasopharyngeal swab
 - Looks for 21 targets
 - 17 viral
 - 4 bacterial
 - Results in 45 minutes

FilmArray RVP Panel Targets

Pathogens Detected by FilmArray RVP	
 Adenovirus 	Parainfluenza
 Coronavirus 	o 1
o HKU1	0 2
0 NL63	0 3
o 229E	o 4
• OC43	RSV
Human metapneumovirus	 Bordetella pertussis
 Human rhinovirus/ enterovirus 	 Chlamydophila pneumonia
Influenza	 Mycoplasma pneumoniae
• A	
0 A/H1	
o A/H1-2009	
0 A/H3	
0 B	

MALDI Biotyper CA

- Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
- Identifies:
 - Gram-Positives and Gram-Negatives
 - Anaerobes
 - Yeast
- Bruker's MALDI Biotyper CA
 - Determines unique protein "fingerprint" of the organism
 - Characteristic patterns of the proteins are used to ID microorganisms by matching against an FDA cleared library

Just because you can

CogenDx

DxWound Test Menu

Aerobic Bacteria, Gram-Positive

Enterococcus faecalis Enterococcus faecium Mycobacterium abscessus Mycobacterium chelonae Staphylococcus aureus Staphylococcus lugdunensis (Coagulase-Negative) Streptococcus agalactiae (Group B) Streptococcus pyogenes (Group A)

Staphylococcal Virulence Gene

lukF-PV (Panton-Valentine Leukocidin, PVL)

Aerobic Bacteria, Gram-Negative

Acinetobacter baumannii Citrobacter freundii Enterobacter aerogenes Enterobacter cloacae Escherichia coli Proteus mirabilis/vulgaris Pseudomonas aeruginosa

Anaerobic Bacteria, Gram-Positive

Clostridium perfringens Clostridium septicum

Anaerobic Bacteria, Gram-Negative

Bacteroides fragilis Prevotella intermedia Prevotella oralis

Fungi

Aspergillus flavus Aspergillus fumigatus Aspergillus niger Candida albicans Candida glabrata Candida parapsilosis Candida tropicalis

Antibiotic Resistance Genes

Carbapenemase
IMP
KPC
NDM
OXA-48
SME
VIM
Extended-Spectrum B-Lactamase
CTX-M
SHV
Macrolide-Lincosamide-Streptogramin B Resistance
ermA
ermB
Oxacillin/Methicillin Resistance
mecA
Vancomycin Resistance
vanA
vanB

Audience Question 1

Which are the following are included in rapid diagnostic test (RDT) provider education:

- A. Presentation of report and guidance on interpretation
- B. Indications for testing in the institution
- C. Rapid ASP intervention for optimal time to appropriate antibiotics
- D. RDT method and technology used
- E. All the above

Audience Question 2

Prioritization risk assessments for ASP include all of the following except:

- A. Anticipated frequency of non-compliance with the test or process if in place
- B. Likelihood the event will occur
- C. Is the proposed test or initiative labor intensive or expensive?
- D. Is the current process in place effective, including good compliance?

Audience Question 3

Previous studies have identified that RDT tests result in:

- A. Improved time to optimal antibiotics for MSSA
- B. Reduced antibiotic exposure for coagulase negative staphylococcus BC contaminants
- C. Reduced length of stay and call backs to ED
- D. Reduced cost to the institution
- E. All the above

Questions?

Deanne Tabb PharmD, MT (ASCP) Infectious Disease Pharmacist Clinical Microbiologist